Unknown

Dataset Information

0

Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells.


ABSTRACT: Parkinson's disease (PD) is defined by the degeneration of nigral dopaminergic (DA) neurons and can be caused by monogenic mutations of genes such as parkin. The lack of phenotype in parkin knockout mice suggests that human nigral DA neurons have unique vulnerabilities. Here we generate induced pluripotent stem cells from normal subjects and PD patients with parkin mutations. We demonstrate that loss of parkin in human midbrain DA neurons greatly increases the transcription of monoamine oxidases and oxidative stress, significantly reduces DA uptake and increases spontaneous DA release. Lentiviral expression of parkin, but not its PD-linked mutant, rescues these phenotypes. The results suggest that parkin controls dopamine utilization in human midbrain DA neurons by enhancing the precision of DA neurotransmission and suppressing dopamine oxidation. Thus, the study provides novel targets and a physiologically relevant screening platform for disease-modifying therapies of PD.

SUBMITTER: Jiang H 

PROVIDER: S-EPMC3498452 | biostudies-literature | 2012 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells.

Jiang Houbo H   Ren Yong Y   Yuen Eunice Y EY   Zhong Ping P   Ghaedi Mahboobe M   Hu Zhixing Z   Azabdaftari Gissou G   Nakaso Kazuhiro K   Yan Zhen Z   Feng Jian J  

Nature communications 20120207


Parkinson's disease (PD) is defined by the degeneration of nigral dopaminergic (DA) neurons and can be caused by monogenic mutations of genes such as parkin. The lack of phenotype in parkin knockout mice suggests that human nigral DA neurons have unique vulnerabilities. Here we generate induced pluripotent stem cells from normal subjects and PD patients with parkin mutations. We demonstrate that loss of parkin in human midbrain DA neurons greatly increases the transcription of monoamine oxidases  ...[more]

Similar Datasets

| S-EPMC3405174 | biostudies-literature
| S-EPMC3408729 | biostudies-literature
| S-EPMC5063469 | biostudies-literature
| S-EPMC5492970 | biostudies-literature
| S-EPMC5510242 | biostudies-literature
| S-EPMC5576272 | biostudies-literature
| S-EPMC4055096 | biostudies-literature
| S-EPMC7562948 | biostudies-literature
| S-EPMC3091622 | biostudies-literature
| S-EPMC10178840 | biostudies-literature