Unknown

Dataset Information

0

Polymorphisms in carcinogen metabolism enzymes, fish intake, and risk of prostate cancer.


ABSTRACT: Cooking fish at high temperature can produce potent carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons. The effects of these carcinogens may undergo modification by the enzymes responsible for their detoxification and/or activation. In this study, we investigated genetic polymorphisms in nine carcinogen metabolism enzymes and their modifying effects on the association between white or dark fish consumption and prostate cancer (PCA) risk. We genotyped 497 localized and 936 advanced PCA cases and 760 controls from the California Collaborative Case-Control Study of Prostate Cancer. Three polymorphisms, EPHX1 Tyr113His, CYP1B1 Leu432Val and GSTT1 null/present, were associated with localized PCA risk. The PTGS2 765 G/C polymorphism modified the association between white fish consumption and advanced PCA risk (interaction P 5 0.002), with high white fish consumption being positively associated with risk only among carriers of the C allele. This effect modification by PTGS2 genotype was stronger when restricted to consumption of well-done white fish (interaction P 5 0.021). These findings support the hypotheses that changes in white fish brought upon by high-temperature cooking methods, such as carcinogen accumulation and/or fatty acid composition changes, may contribute to prostate carcinogenesis. However, the gene-diet interactions should be interpreted with caution given the limited sample size. Thus, our findings require further validation with additional studies.

SUBMITTER: Catsburg C 

PROVIDER: S-EPMC3499053 | biostudies-literature | 2012 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polymorphisms in carcinogen metabolism enzymes, fish intake, and risk of prostate cancer.

Catsburg Chelsea C   Joshi Amit D AD   Corral Román R   Lewinger Juan Pablo JP   Koo Jocelyn J   John Esther M EM   Ingles Sue A SA   Stern Mariana C MC  

Carcinogenesis 20120518 7


Cooking fish at high temperature can produce potent carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons. The effects of these carcinogens may undergo modification by the enzymes responsible for their detoxification and/or activation. In this study, we investigated genetic polymorphisms in nine carcinogen metabolism enzymes and their modifying effects on the association between white or dark fish consumption and prostate cancer (PCA) risk. We genotyped 497 localized and 9  ...[more]

Similar Datasets

| S-EPMC2751598 | biostudies-literature
| S-EPMC3883510 | biostudies-literature
| S-EPMC4298391 | biostudies-literature
| 2244562 | ecrin-mdr-crc
| S-EPMC3398241 | biostudies-literature
| S-EPMC7339922 | biostudies-literature
| S-EPMC3148811 | biostudies-literature
| S-EPMC2984254 | biostudies-literature
| S-EPMC3324443 | biostudies-literature
| S-EPMC3179424 | biostudies-literature