Project description:BackgroundRanolazine inhibits Na+ current (INa), but whether it can convert atrial fibrillation (AF) to sinus rhythm remains unclear. We investigated antiarrhythmic mechanisms of ranolazine in sheep models of paroxysmal (PxAF) and persistent AF (PsAF).MethodsPxAF was maintained during acute stretch (N=8), and PsAF was induced by long-term atrial tachypacing (N=9). Isolated, Langendorff-perfused sheep hearts were optically mapped.ResultsIn PxAF ranolazine (10 μmol/L) reduced dominant frequency from 8.3±0.4 to 6.2±0.5 Hz (P<0.01) before converting to sinus rhythm, decreased singularity point density from 0.070±0.007 to 0.039±0.005 cm-2 s-1 (P<0.001) in left atrial epicardium (LAepi), and prolonged AF cycle length (AFCL); rotor duration, tip trajectory, and variance of AFCL were unaltered. In PsAF, ranolazine reduced dominant frequency (8.3±0.5 to 6.5±0.4 Hz; P<0.01), prolonged AFCL, increased the variance of AFCL, had no effect on singularity point density (0.048±0.011 to 0.042±0.016 cm-2 s-1; P=ns) and failed to convert AF to sinus rhythm. Doubling the ranolazine concentration (20 μmol/L) or supplementing with dofetilide (1 μmol/L) failed to convert PsAF to sinus rhythm. In computer simulations of rotors, reducing INa decreased dominant frequency, increased tip meandering and produced vortex shedding on wave interaction with unexcitable regions.ConclusionsPxAF and PsAF respond differently to ranolazine. Cardioversion in the former can be attributed partly to decreased dominant frequency and singularity point density, and prolongation of AFCL. In the latter, increased dispersion of AFCL and likely vortex shedding contributes to rotor formation, compensating for any rotor loss, and may underlie the inefficacy of ranolazine to terminate PsAF.
Project description:The aim of this study was to evaluate the effectiveness of a combination of dronedarone and ranolazine in suppression of atrial fibrillation (AF).Safe and effective pharmacological management of AF remains one of the greatest unmet medical needs.The electrophysiological effects of dronedarone (10 ?mol/l) and a relatively low concentration of ranolazine (5 ?mol/l) separately and in combination were evaluated in canine isolated coronary-perfused right and left atrial and left ventricular preparations as well as in pulmonary vein preparations.Ranolazine caused moderate atrial-selective prolongation of action potential duration and atrial-selective depression of sodium channel-mediated parameters, including maximal rate of rise of the action potential upstroke, leading to the development of atrial-specific post-repolarization refractoriness. Dronedarone caused little or no change in electrophysiological parameters in both atrial and ventricular preparations. The combination of dronedarone and ranolazine caused little change in action potential duration in either chamber but induced potent use-dependent atrial-selective depression of the sodium channel-mediated parameters (maximal rate of rise of the action potential upstroke, diastolic threshold of excitation, and the shortest cycle length permitting a 1:1 response) and considerable post-repolarization refractoriness. Separately, dronedarone or a low concentration of ranolazine prevented the induction of AF in 17% and 29% of preparations, respectively. In combination, the 2 drugs suppressed AF and triggered activity and prevented the induction of AF in 9 of 10 preparations (90%).Low concentrations of ranolazine and dronedarone produce relatively weak electrophysiological effects and weak suppression of AF when used separately but when combined exert potent synergistic effects, resulting in atrial-selective depression of sodium channel-dependent parameters and effective suppression of AF.
Project description:Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and one of the major causes of cardiovascular morbidity and mortality. Despite good progress within the past years, safe and effective treatment of AF remains an unmet clinical need. The anti-anginal agent ranolazine has been shown to exhibit antiarrhythmic properties via mainly late INa and IKr blockade. This results in prolongation of the atrial action potential duration (APD) and effective refractory period (ERP) with lower effect on ventricular electrophysiology. Furthermore, ranolazine has been shown to be effective in the treatment of AF. TASK-1 is a two-pore domain potassium (K2P) channel that shows nearly atrial specific expression within the human heart and has been found to be upregulated in AF, resulting in shortening the atrial APD in patients suffering from AF. We hypothesized that inhibition TASK-1 contributes to the observed electrophysiological and clinical effects of ranolazine. Methods: We used Xenopus laevis oocytes and CHO-cells as heterologous expression systems for the study of TASK-1 inhibition by ranolazine and molecular drug docking simulations to investigate the ranolazine binding site and binding characteristics. Results: Ranolazine acts as an inhibitor of TASK-1 potassium channels that inhibits TASK-1 currents with an IC50 of 30.6 ± 3.7 µM in mammalian cells and 198.4 ± 1.1 µM in X. laevis oocytes. TASK-1 inhibition by ranolazine is not frequency dependent but shows voltage dependency with a higher inhibitory potency at more depolarized membrane potentials. Ranolazine binds within the central cavity of the TASK-1 inner pore, at the bottom of the selectivity filter. Conclusions: In this study, we show that ranolazine inhibits TASK-1 channels. We suggest that inhibition of TASK-1 may contribute to the observed antiarrhythmic effects of Ranolazine. This puts forward ranolazine as a prototype drug for the treatment of atrial arrhythmia because of its combined efficacy on atrial electrophysiology and lower risk for ventricular side effects.
Project description:BackgroundAtrial fibrillation (AF) is the most common clinical arrhythmia and a major cause of morbidity and mortality in clinical practice. This study aims to determine the ranolazine for prevention and treatment of atrial fibrillation.MethodThis study adheres to the Preferred Reporting Items for Systematic Reviews and Meta-analysis for Protocols. Chinese electronic Database (CBM, Wanfang, and CNKI) and international electronic databases (PubMed, Embase, Cochrane Library, and Web of Science) will be searched for all relevant published articles. We will apply no language or the year of publication restrictions. Study selection, data collection, and assessment of study bias will be conducted independently by a pair of independent reviewers. The Cochrane risk of bias (ROB) tool will be used for the risk of bias assessment. The quality of evidence will be evaluated by Grading of Recommendations Assessment Development and Evaluation (GRADE) system. The statistical analysis of this meta-analysis will be calculated by Review manager version 5.3.ResultsThe results of this study will be published in a peer-reviewed journal.ConclusionThis review will evaluate the value of ranolazine interventions for patients with AF, and provide meaningful conclusions or high-level evidence for clinical practice and further research.Trial registrationThis study protocol was registered in open Science framework (OSF), (Registration DOI: 10.17605/OSF.IO/T6W9Q).
Project description:The molecular mechanisms underlying atrial fibrillation (AF), the most common form of arrhythmia, are poorly understood and therefore target-specific treatment options remain an unmet clinical need. Excitation-contraction coupling in cardiac myocytes requires high amounts of adenosine triphosphate (ATP), which is replenished by oxidative phosphorylation in mitochondria. Calcium (Ca2+) is a key regulator of mitochondrial function by stimulating the Krebs cycle, which produces nicotinamide adenine dinucleotide for ATP production at the electron transport chain and nicotinamide adenine dinucleotide phosphate for the elimination of reactive oxygen species (ROS). While it is now well established that mitochondrial dysfunction plays an important role in the pathophysiology of heart failure, this has been less investigated in atrial myocytes in AF. Considering the high prevalence of AF, investigating the role of mitochondria in this disease may guide the path towards new therapeutic targets. In this review, we discuss the importance of mitochondrial Ca2+ handling in regulating ATP production and mitochondrial ROS emission and how alterations, particularly in these aspects of mitochondrial activity, may play a role in AF. In addition to describing research advances, we highlight areas in which further studies are required to elucidate the role of mitochondria in AF.
Project description:Atrial fibrillation (AF) is the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence dramatically increases with age and could reach up to ∼10% in the elderly. The management of AF is a complex issue that is object of extensive ongoing basic and clinical research, it depends on its genetic and epigenetic causes, and it varies considerably geographically and also according to the ethnicity. Mechanistically, over the last decade, Genome Wide Association Studies have uncovered over 100 genetic loci associated with AF, and have shown that European ancestry is associated with elevated risk of AF. These AF-associated loci revolve around different types of disturbances, including inflammation, electrical abnormalities, and structural remodeling. Moreover, the discovery of epigenetic regulatory mechanisms, involving non-coding RNAs, DNA methylation and histone modification, has allowed unravelling what modifications reshape the processes leading to arrhythmias. Our review provides a current state of the field regarding the identification and functional characterization of AF-related genetic and epigenetic regulatory networks, including ethnic differences. We discuss clear and emerging connections between genetic regulation and pathophysiological mechanisms of AF.
Project description:Postoperative atrial fibrillation (POAF) is the most common type of secondary atrial fibrillation (AF) and despite progress in prevention and treatment, remains an important clinical problem for patients undergoing a variety of surgical procedures, and in particular cardiac surgery. POAF significantly increases the duration of postoperative hospital stay, hospital costs, and the risk of recurrent AF in the years after surgery; moreover, POAF has been associated with a variety of adverse cardiovascular events (including stroke, heart failure, and mortality), although it is still unclear if this is due to causal relation or simple association. New data have recently emerged on the pathophysiology of POAF, and new preventive and therapeutic strategies have been proposed and tested in randomized trials. This review summarizes the current evidence on the pathogenesis, incidence, prevention, and treatment of POAF and highlights future directions for clinical research.
Project description:Atrial fibrillation is a highly prevalent cardiac arrhythmia and the most important cause of embolic stroke. Although genetic studies have identified an increasing assembly of AF-related genes, the impact of these genetic discoveries is yet to be realized. In addition, despite more than a century of research and speculation, the molecular and cellular mechanisms underlying AF have not been established, and therapy for AF, particularly persistent AF, remains suboptimal. Current antiarrhythmic drugs are associated with a significant rate of adverse events, particularly proarrhythmia, which may explain why many highly symptomatic AF patients are not receiving any rhythm control therapy. This review focuses on recent advances in AF research, including its epidemiology, genetics, and pathophysiological mechanisms. We then discuss the status of antiarrhythmic drug therapy for AF today, reviewing molecular mechanisms, and the possible clinical use of some of the new atrial-selective antifibrillatory agents, as well as drugs that target atrial remodeling, inflammation and fibrosis, which are being tested as upstream therapies to prevent AF perpetuation. Altogether, the objective is to highlight the magnitude and endemic dimension of AF, which requires a significant effort to develop new and effective antiarrhythmic drugs, but also improve AF prevention and treatment of risk factors that are associated with AF complications.
Project description:BackgroundAntiarrhythmic compounds against atrial fibrillation (AF) often have reduced efficacy and may display cardiac and/or noncardiac toxicity. Efficacy can be improved by combining 2 compounds with distinct mechanisms, and it may be possible to use lower doses of each compound, thereby reducing the likelihood of adverse side effects. The purpose of this study was to investigate whether the effective doses of dofetilide and ranolazine can be reduced if the drugs are combined.MethodsDofetilide, ranolazine, and a combination of these were administered in 4 incremental dosing regimens to horses with acutely pacing-induced AF. Time to cardioversion, atrial effective refractory period, and AF vulnerability and duration were assessed.ResultsOf 8 horses, 6 cardioverted to sinus rhythm after infusion with a combination of 0.889 μg/kg dofetilide and 0.104 mg/kg ranolazine. Two horses cardioverted with 0.104 mg/kg ranolazine alone, and 3 cardioverted with 0.889 μg/kg dofetilide alone. The combination therapy decreased AF vulnerability (P < 0.05) and AF duration (P < 0.05). No change in atrial effective refractory period was detected with any of the drugs.ConclusionsThe combination of dofetilide and ranolazine showed increased antiarrhythmic effects on acutely induced AF in horses, affecting time to cardioversion, AF vulnerability, and AF duration.
Project description:AF is a heterogeneous rhythm disorder that is related to a wide spectrum of etiologies and has broad clinical presentations. Mechanisms underlying AF are complex and remain incompletely understood despite extensive research. They associate interactions between triggers, substrate and modulators including ionic and anatomic remodeling, genetic predisposition and neuro-humoral contributors. The pulmonary veins play a key role in the pathogenesis of AF and their isolation is associated to high rates of AF freedom in patients with paroxysmal AF. However, ablation of persistent AF remains less effective, mainly limited by the difficulty to identify the sources sustaining AF. Many theories were advanced to explain the perpetuation of this form of AF, ranging from a single localized focal and reentrant source to diffuse bi-atrial multiple wavelets. Translating these mechanisms to the clinical practice remains challenging and limited by the spatio-temporal resolution of the mapping techniques. AF is driven by focal or reentrant activities that are initially clustered in a relatively limited atrial surface then disseminate everywhere in both atria. Evidence for structural remodeling, mainly represented by atrial fibrosis suggests that reentrant activities using anatomical substrate are the key mechanism sustaining AF. These reentries can be endocardial, epicardial, and intramural which makes them less accessible for mapping and for ablation. Subsequently, early interventions before irreversible remodeling are of major importance. Circumferential pulmonary vein isolation remains the cornerstone of the treatment of AF, regardless of the AF form and of the AF duration. No ablation strategy consistently demonstrated superiority to pulmonary vein isolation in preventing long term recurrences of atrial arrhythmias. Further research that allows accurate identification of the mechanisms underlying AF and efficient ablation should improve the results of PsAF ablation.