MDA5 can be exploited as efficacious genetic adjuvant for DNA vaccination against lethal H5N1 influenza virus infection in chickens.
Ontology highlight
ABSTRACT: Chickens lack the retinoic acid-inducible gene I (RIG-I) and sense avian influenza virus (AIV) infections by means of the melanoma differentiation-associated gene 5 product (chMDA5). Plasmid-driven expression of the N-terminal half of chMDA5 containing the caspase activation and recruitment domains [chMDA5(1-483)] triggers interferon-? responses in chicken cells. We hypothesized that mimicking virus infection by chMDA5(1-483) expression may enhance vaccine-induced adaptive immunity. In order to test this, the potential genetic adjuvant properties of chMDA5(1-483) were evaluated in vivo in combination with a suboptimal quantity of a plasmid DNA vaccine expressing haemagglutinin (HA) of H5N1 AIV. Co-administration of the HA plasmid with plasmid DNA for chMDA5(1-483) expression resulted in approximately 10-fold higher HA-specific antibody responses than injection of the HA plasmid mixed with empty vector DNA as control. Accordingly, compared with HA DNA vaccination alone, the chMDA5(1-483)-adjuvanted HA DNA vaccine mediated enhanced protection against a lethal H5N1 challenge infection in chickens, with reduced clinical signs and cloacal virus shedding. These data demonstrate that innate immune activation by expression of signaling domains of RIG-I-like receptors can be exploited to enhance vaccine efficacy.
SUBMITTER: Liniger M
PROVIDER: S-EPMC3515599 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA