Chiral micellar electrokinetic chromatography-atmospheric pressure photoionization of benzoin derivatives using mixed molecular micelles.
Ontology highlight
ABSTRACT: In the present work we report, for the first time, the successful on-line coupling of chiral MEKC (CMEKC) to atmospheric pressure photoionization MS (APPI-MS). Four structurally similar neutral test solutes (e.g. benzoin (BNZ) derivatives) were successfully ionized by APPI-MS. The mass spectra in the positive ion mode showed that the protonated molecular ions of BNZs are not the most abundant fragment ions. Simultaneous enantioseparation by CMEKC and on-line APPI-MS detection of four photoinitiators, hydrobenzoin, BNZ, benzoin methyl ether, benzoin ethyl ether, were achieved using an optimized molar ratio of mixed molecular micelle of two polymeric chiral surfactants (polysodium N-undecenoxy carbonyl-L-leucinate and polysodium N-undecenoyl-L,L-leucylvalinate). The CMEKC conditions, such as voltage, chiral polymeric surfactant concentration, buffer pH, and BGE concentration, were optimized using a multivariate central composite design (CCD). The sheath liquid composition (involving %v/v methanol, dopant concentration, electrolyte additive concentration, and flow rate) and spray chamber parameters (drying gas flow rate, drying gas temperature, and vaporizer temperature) were also optimized with CCD. Models built based on the CCD results and response surface method were used to analyze the interactions between factors and their effects on the responses. The final overall optimum conditions for CMEKC-APPI-MS were also predicted and found in agreement with the experimentally optimized parameters.
SUBMITTER: He J
PROVIDER: S-EPMC3516879 | biostudies-literature | 2011 May
REPOSITORIES: biostudies-literature
ACCESS DATA