Unknown

Dataset Information

0

An automated plasma protein fractionation design: high-throughput perspectives for proteomic analysis.


ABSTRACT:

Background

Human plasma, representing the most complete record of the individual phenotype, is an appealing sample for proteomics analysis in clinical applications. Up to today, the major obstacle in a proteomics study of plasma is the large dynamic range of protein concentration and the efforts of many researchers focused on the resolution of this important drawback.

Findings

In this study, proteins from pooled plasma samples were fractionated according to their chemical characteristics on a home-designed SPE automated platform. The resulting fractions were digested and further resolved by reversed-phase liquid chromatography coupled with MALDI TOF/TOF mass spectrometry. A total of 712 proteins were successfully identified until a concentration level of ng/mL. Pearson correlation coefficient was used to test reproducibility.

Conclusions

Our multidimensional fractionation approach reduced the analysis time (2 days are enough to process 16 plasma samples filling a 96-well plate) over the conventional gel-electrophoresis or multi-LC column based methods. The robotic processing, avoiding contaminants or lack of sample handling skill, promises highly reproducible specimen analyses (more than 85% Pearson correlation). The automated platform here presented is flexible and easily modulated changing fractioning elements or detectors.

SUBMITTER: Boccardi C 

PROVIDER: S-EPMC3517536 | biostudies-literature | 2012 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

An automated plasma protein fractionation design: high-throughput perspectives for proteomic analysis.

Boccardi Claudia C   Rocchiccioli Silvia S   Cecchettini Antonella A   Mercatanti Alberto A   Citti Lorenzo L  

BMC research notes 20121101


<h4>Background</h4>Human plasma, representing the most complete record of the individual phenotype, is an appealing sample for proteomics analysis in clinical applications. Up to today, the major obstacle in a proteomics study of plasma is the large dynamic range of protein concentration and the efforts of many researchers focused on the resolution of this important drawback.<h4>Findings</h4>In this study, proteins from pooled plasma samples were fractionated according to their chemical characte  ...[more]

Similar Datasets

| S-EPMC434456 | biostudies-literature
| S-EPMC4830504 | biostudies-literature
| S-EPMC8880914 | biostudies-literature
2014-06-01 | GSE53366 | GEO
| S-EPMC6603000 | biostudies-literature
| S-EPMC9583850 | biostudies-literature
2013-02-12 | E-ERAD-77 | biostudies-arrayexpress
| S-EPMC6441306 | biostudies-literature
| S-EPMC4606567 | biostudies-literature
| S-EPMC6980378 | biostudies-literature