His26 protonation in cytochrome c triggers microsecond ?-sheet formation and heme exposure: implications for apoptosis.
Ontology highlight
ABSTRACT: Cytochrome c unfolds locally and reversibly upon heating at pH 3. UV resonance Raman (UVRR) spectra reveal that instead of producing unordered structure, unfolding converts turns and some helical elements to ?-sheet. It also disrupts the Met80-heme bond, and has been previously shown to induce peroxidase activity. Aromatic residues that are H-bonded to a heme propionate (Trp59 and Tyr48) alter their orientation, indicating heme displacement. T-jump/UVRR measurements give time constants of 0.2, 3.9, and 67 ?s for successive phases of ?-sheet formation and concomitant reorientation of Trp59. UVRR spectra reveal protonation of histidines, and specifically of His26, whose H-bond to Pro44 anchors the 40s ? loop; this loop is known to be the least stable 'foldon' in the protein. His26 protonation is proposed to disrupt its H-bond with Pro44, triggering the extension of a short ?-sheet segment at the 'neck' of the 40s ? loop into the loop itself and back into the 60s and 70s helices. The secondary structure change displaces the heme via H-bonds from residues in the growing ?-sheet, thereby exposing it to exogenous ligands, and inducing peroxidase activity. This unfolding mechanism may play a role in cardiolipin peroxidation by cyt c during apoptosis.
SUBMITTER: Balakrishnan G
PROVIDER: S-EPMC3529097 | biostudies-literature | 2012 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA