Unknown

Dataset Information

0

A model-based clustering method for genomic structural variant prediction and genotyping using paired-end sequencing data.


ABSTRACT: Structural variation (SV) has been reported to be associated with numerous diseases such as cancer. With the advent of next generation sequencing (NGS) technologies, various types of SV can be potentially identified. We propose a model based clustering approach utilizing a set of features defined for each type of SV events. Our method, termed SVMiner, not only provides a probability score for each candidate, but also predicts the heterozygosity of genomic deletions. Extensive experiments on genome-wide deep sequencing data have demonstrated that SVMiner is robust against the variability of a single cluster feature, and it significantly outperforms several commonly used SV detection programs. SVMiner can be downloaded from http://cbc.case.edu/svminer/.

SUBMITTER: Hayes M 

PROVIDER: S-EPMC3531386 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

A model-based clustering method for genomic structural variant prediction and genotyping using paired-end sequencing data.

Hayes Matthew M   Pyon Yoon Soo YS   Li Jing J  

PloS one 20121227 12


Structural variation (SV) has been reported to be associated with numerous diseases such as cancer. With the advent of next generation sequencing (NGS) technologies, various types of SV can be potentially identified. We propose a model based clustering approach utilizing a set of features defined for each type of SV events. Our method, termed SVMiner, not only provides a probability score for each candidate, but also predicts the heterozygosity of genomic deletions. Extensive experiments on geno  ...[more]

Similar Datasets

| S-EPMC2905550 | biostudies-other
| S-EPMC3483208 | biostudies-literature
| S-EPMC3436805 | biostudies-literature
| S-EPMC3695511 | biostudies-literature
| S-EPMC4179644 | biostudies-literature
| S-EPMC2688268 | biostudies-literature
2012-10-04 | E-GEOD-32674 | biostudies-arrayexpress
2012-10-04 | GSE32674 | GEO
| S-EPMC3614465 | biostudies-other
| S-EPMC3279355 | biostudies-literature