Unknown

Dataset Information

0

Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases.


ABSTRACT: Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior.

SUBMITTER: Felsovalyi F 

PROVIDER: S-EPMC3537233 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases.

Felsovalyi Flora F   Patel Tushar T   Mangiagalli Paolo P   Kumar Sanat K SK   Banta Scott S  

Protein science : a publication of the Protein Society 20120615 8


Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only mo  ...[more]

Similar Datasets

| S-EPMC4388799 | biostudies-literature
| S-EPMC8318518 | biostudies-literature
| S-EPMC3297832 | biostudies-literature
| S-EPMC4956669 | biostudies-literature
| S-EPMC3410611 | biostudies-literature
| S-EPMC5119574 | biostudies-literature
| S-EPMC6883066 | biostudies-literature
| S-EPMC2561330 | biostudies-literature
| S-EPMC2761211 | biostudies-literature
| S-EPMC5989857 | biostudies-literature