Unknown

Dataset Information

0

The reaction mechanism of the enantioselective Tsuji allylation: inner-sphere and outer-sphere pathways, internal rearrangements, and asymmetric C-C bond formation.


ABSTRACT: We use first principles quantum mechanics (density functional theory) to report a detailed reaction mechanism of the asymmetric Tsuji allylation involving prochiral nucleophiles and nonprochiral allyl fragments, which is consistent with experimental findings. The observed enantioselectivity is best explained with an inner-sphere mechanism involving the formation of a 5-coordinate Pd species that undergoes a ligand rearrangement, which is selective with regard to the prochiral faces of the intermediate enolate. Subsequent reductive elimination generates the product and a Pd(0) complex. The reductive elimination occurs via an unconventional seven-centered transition state that contrasts dramatically with the standard three-centered C-C reductive elimination mechanism. Although limitations in the present theory prevent the conclusive identification of the enantioselective step, we note that three different computational schemes using different levels of theory all find that inner-sphere pathways are lower in energy than outer-sphere pathways. This result qualitatively contrasts with established allylation reaction mechanisms involving prochiral nucleophiles and prochiral allyl fragments. Energetic profiles of all reaction pathways are presented in detail.

SUBMITTER: Keith JA 

PROVIDER: S-EPMC3537505 | biostudies-literature | 2012 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The reaction mechanism of the enantioselective Tsuji allylation: inner-sphere and outer-sphere pathways, internal rearrangements, and asymmetric C-C bond formation.

Keith John A JA   Behenna Douglas C DC   Sherden Nathaniel N   Mohr Justin T JT   Ma Sandy S   Marinescu Smaranda C SC   Nielsen Robert J RJ   Oxgaard Jonas J   Stoltz Brian M BM   Goddard William A WA  

Journal of the American Chemical Society 20121106 46


We use first principles quantum mechanics (density functional theory) to report a detailed reaction mechanism of the asymmetric Tsuji allylation involving prochiral nucleophiles and nonprochiral allyl fragments, which is consistent with experimental findings. The observed enantioselectivity is best explained with an inner-sphere mechanism involving the formation of a 5-coordinate Pd species that undergoes a ligand rearrangement, which is selective with regard to the prochiral faces of the interm  ...[more]

Similar Datasets

| S-EPMC6760471 | biostudies-literature
| S-EPMC3434318 | biostudies-literature
| S-EPMC5777894 | biostudies-literature
| S-EPMC2547484 | biostudies-literature
| S-EPMC5304617 | biostudies-literature
| S-EPMC4506507 | biostudies-literature
| S-EPMC7418107 | biostudies-literature
| S-EPMC3827786 | biostudies-literature
| S-EPMC3237403 | biostudies-literature
| S-EPMC8638802 | biostudies-literature