Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover.
Ontology highlight
ABSTRACT: Enzyme catalysis is central to almost all biochemical processes, speeding up rates of reactions to biological relevant timescales. Enzymes make use of a large ensemble of conformations in recognizing their substrates and stabilizing the transition states, due to the inherent dynamical nature of biomolecules. The exact role of these diverse enzyme conformations and the interplay between enzyme conformational dynamics and catalysis is, according to the literature, not well understood. Here, we use molecular dynamics simulations to study human cyclophilin A (CypA), in order to understand the role of enzyme motions in the catalytic mechanism and recognition. Cyclophilin A is a tractable model system to study using classical simulation methods, because catalysis does not involve bond formation or breakage. We show that the conformational dynamics of active site residues of substrate-bound CypA is inherent in the substrate-free enzyme. CypA interacts with its substrate via conformational selection as the configurations of the substrate changes during catalysis. We also show that, in addition to tight intermolecular hydrophobic interactions between CypA and the substrate, an intricate enzyme-substrate intermolecular hydrogen-bonding network is extremely sensitive to the configuration of the substrate. These enzyme-substrate intermolecular interactions are loosely formed when the substrate is in the reactant and product states and become well formed and reluctant to break when the substrate is in the transition state. Our results clearly suggest coupling among enzyme-substrate intermolecular interactions, the dynamics of the enzyme, and the chemical step. This study provides further insights into the mechanism of peptidyl-prolyl cis/trans isomerases and the general interplay between enzyme conformational dynamics and catalysis.
SUBMITTER: McGowan LC
PROVIDER: S-EPMC3540238 | biostudies-literature | 2013 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA