Unknown

Dataset Information

0

Breast cancer subtyping from plasma proteins.


ABSTRACT:

Background

Early detection of breast cancer in blood is both appealing clinically and challenging technically due to the disease's illusive nature and heterogeneity. Today, even though major breast cancer subtypes have been characterized, i.e., luminal A, luminal B, HER2+, and basal-like, little is known about the heterogeneity of breast cancer in blood, which could help to discover minimally invasive protein biomarkers with which clinical researchers can detect, classify, and monitor different breast cancer subtypes.

Results

In this study, we performed an integrative pathway-assisted clustering analysis of breast cancer subtypes from plasma proteome samples collected from 80 patients diagnosed with breast cancer and 80 healthy women. First, four breast cancer subtypes and additionally unknown subtype (according to existing annotation) were determined based on pathology lab test results in primary tumors of enrolled patients. Next, we developed and applied four distance metrics, i.e., Protein Intensity, Q-Value, Pathway Profile, and Distance Score Function, to measure and characterize these cancer subtypes. Then, we developed a permutation test to evaluate the significant protein level changes in each biological pathway for each breast cancer subtype, using q-value. Lastly, we developed a pathway-protein matrix for each of the four distance methods to estimate the distance between breast cancer subtypes, for which further Pathway Association Network analysis were performed.

Conclusions

We found that 1) the luminal group (luminal A and luminal B) are clustered together, as well as the basal group (basal-like and HER2+) and 2) luminal A and luminal B are more close to each other than basal-like and HER2+ to each other. Our results were consistent with a recent independent breast cancer research from the Cancer Genome Atlas Network using genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our results showed that changes of different breast cancer subtypes at the pathway level are more profound and less variable than those at the molecular level. Similar subtypes share distinct yet similar pathway activation networks, while dissimilar subtypes are different also at the level of pathway activation networks. The results also showed that distance or similarity of cancer subtypes based on pathway analysis might be able to provide further insight into the intrinsic relationship of breast cancer subtypes. We believe integrative pathway-assisted proteomics analysis described here can become a model for reliable clustering or classification of other cancer subtypes.

SUBMITTER: Zhang F 

PROVIDER: S-EPMC3552699 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Breast cancer subtyping from plasma proteins.

Zhang Fan F   Chen Jake Y JY  

BMC medical genomics 20130123


<h4>Background</h4>Early detection of breast cancer in blood is both appealing clinically and challenging technically due to the disease's illusive nature and heterogeneity. Today, even though major breast cancer subtypes have been characterized, i.e., luminal A, luminal B, HER2+, and basal-like, little is known about the heterogeneity of breast cancer in blood, which could help to discover minimally invasive protein biomarkers with which clinical researchers can detect, classify, and monitor di  ...[more]

Similar Datasets

| S-ECPF-GEOD-20685 | biostudies-other
| S-EPMC4365540 | biostudies-other
| S-EPMC3856946 | biostudies-literature
| S-EPMC9304912 | biostudies-literature
2011-04-24 | E-GEOD-20685 | biostudies-arrayexpress
| S-EPMC3412597 | biostudies-literature
| S-EPMC7285581 | biostudies-literature
2011-04-24 | GSE20685 | GEO
| S-EPMC10667261 | biostudies-literature
| S-EPMC2791417 | biostudies-other