Ontology highlight
ABSTRACT: Background
MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. Specifically, microRNA-221 (miR-221) is overexpressed in many human cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-221 in human osteosarcoma has not been totally elucidated. In the present study, the effects of miR-221 on osteosarcoma and the possible mechanism by which miR-221 affected the survival, apoptosis, and cisplatin resistance of osteosarcoma were investigated.Methodology/principal findings
Real-time quantitative PCR analysis revealed miR-221 was significantly upregulated in osteosarcoma cell lines than in osteoblasts. Both human osteosarcoma cell lines SOSP-9607 and MG63 were transfected with miR-221 mimic or inhibitor to regulate miR-221 expression. The effects of miR-221 were then assessed by cell viability, cell cycle analysis, apoptosis assay, and cisplatin resistance assay. In both cells, upregulation of miR-221 induced cell survival and cisplatin resistance and reduced cell apoptosis. In addition, knockdown of miR-221 inhibited cell growth and cisplatin resistance and induced cell apoptosis. Potential target genes of miR-221 were predicted using bioinformatics. Moreover, luciferase reporter assay and western blot confirmed that PTEN was a direct target of miR-221. Furthermore, introduction of PTEN cDNA lacking 3'-UTR or PI3K inhibitor LY294002 abrogated miR-221-induced cisplatin resistance. Finally, both miR-221 and PTEN expression levels in osteosarcoma samples were examined by using real-time quantitative PCR and immunohistochemistry. High miR-221 expression level and inverse correlation between miR-221 and PTEN levels were revealed in osteosarcoma tissues.Conclusions/significance
These results for the first time demonstrate that upregulation of miR-221 induces the malignant phenotype of human osteosarcoma whereas knockdown of miR-221 reverses this phenotype, suggesting that miR-221 could be a potential target for osteosarcoma treatment.
SUBMITTER: Zhao G
PROVIDER: S-EPMC3553141 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
PloS one 20130123 1
<h4>Background</h4>MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. Specifically, microRNA-221 (miR-221) is overexpressed in many human cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-221 in human osteosarcoma has not been totally elucidated. In the present study, the effects of ...[more]