ABSTRACT: Sagittaria trifolia is a good model of wetland plants to elucidate the formation of corm. However, few studies have been conducted to uncover the complexity of gene expression involved in corm formation. In this study, high-throughput tag-sequencing based on Solexa Genome Analyzer Platform was applied to monitor the changes in gene expression with three libraries of differentially expressed genes (DEGs) (C1 library: stolon stage, C2 library: initial swelling stage and C3 library: swelling stage) during corm formation in Sagittaria trifolia. Approximately 6.0 million tags were sequenced, and 5854021, 5983454, and 5761079 clean tags including 138319, 116804, and 101739 distinct tags were obtained after removal of low quality tags from each library, respectively. About 46% distinct tags were unambiguous tags mapping to the reference genes, and 33% were unambiguous tag-mapped genes. Totally, 20575, 19807, and 18438 were annotated in C1, C2, and C3 libraries, respectively, after mapping their functions in existing databases. In addition, we found that profiling of gene expression in C1/C2 and C2/C3 libraries were different among most of the selected 20 DEGs. Most DEGs in C1/C2 libraries were relevant to hormone synthesis and response; energy metabolism and stress response, while most of the genes in C2/C3 libraries were involved in carbohydrate metabolism. All up-regulated transcriptional factors and 16 important genes relevant to corm formation in three libraries were also identified. To further analyze the expression of 9 genes, from the results of tag-sequencing, qRT-PCR was applied. In summary, this study provides a comprehensive understanding of gene expression, during the formation of corm in Sagittaria trifolia.