Unknown

Dataset Information

0

Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome.


ABSTRACT: Expansions of (CTG)·(CAG) repeated DNAs are the mutagenic cause of 14 neurological diseases, likely arising through the formation and processing of slipped-strand DNAs. These transient intermediates of repeat length mutations are formed by out-of-register mispairing of repeat units on complementary strands. The three-way slipped-DNA junction, at which the excess repeats slip out from the duplex, is a poorly understood feature common to these mutagenic intermediates. Here, we reveal that slipped junctions can assume a surprising number of interconverting conformations where the strand opposite the slip-out either is fully base paired or has one or two unpaired nucleotides. These unpaired nucleotides can also arise opposite either of the nonslipped junction arms. Junction conformation can affect binding by various structure-specific DNA repair proteins and can also alter correct nick-directed repair levels. Junctions that have the potential to contain unpaired nucleotides are repaired with a significantly higher efficiency than constrained fully paired junctions. Surprisingly, certain junction conformations are aberrantly repaired to expansion mutations: misdirection of repair to the non-nicked strand opposite the slip-out leads to integration of the excess slipped-out repeats rather than their excision. Thus, slipped-junction structure can determine whether repair attempts lead to correction or expansion mutations.

SUBMITTER: Slean MM 

PROVIDER: S-EPMC3566650 | biostudies-literature | 2013 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome.

Slean Meghan M MM   Reddy Kaalak K   Wu Bin B   Nichol Edamura Kerrie K   Kekis Mariana M   Nelissen Frank H T FH   Aspers Ruud L E G RL   Tessari Marco M   Schärer Orlando D OD   Wijmenga Sybren S SS   Pearson Christopher E CE  

Biochemistry 20130122 5


Expansions of (CTG)·(CAG) repeated DNAs are the mutagenic cause of 14 neurological diseases, likely arising through the formation and processing of slipped-strand DNAs. These transient intermediates of repeat length mutations are formed by out-of-register mispairing of repeat units on complementary strands. The three-way slipped-DNA junction, at which the excess repeats slip out from the duplex, is a poorly understood feature common to these mutagenic intermediates. Here, we reveal that slipped  ...[more]

Similar Datasets

| S-EPMC137136 | biostudies-literature
| S-EPMC7794359 | biostudies-literature
| S-EPMC3868534 | biostudies-literature
| S-EPMC5778509 | biostudies-literature
| S-EPMC3687200 | biostudies-literature
| S-EPMC7049705 | biostudies-literature
| S-EPMC2873807 | biostudies-literature
| S-EPMC7043212 | biostudies-literature
| S-EPMC2896521 | biostudies-literature
| S-EPMC9974457 | biostudies-literature