Unknown

Dataset Information

0

Compressed carbon nanotubes: a family of new multifunctional carbon allotropes.


ABSTRACT: The exploration of novel functional carbon polymorphs is an enduring topic of scientific investigations. In this paper, we present simulations demonstrating metastable carbon phases as the result of pressure induced carbon nanotube polymerization. The configuration, bonding, electronic, and mechanical characteristics of carbon polymers strongly depend on the imposed hydrostatic/non-hydrostatic pressure, as well as on the geometry of the raw carbon nanotubes including diameter, chirality, stacking manner, and wall number. Especially, transition processes under hydrostatic/non-hydrostatic pressure are investigated, revealing unexpectedly low transition barriers and demonstrating sp(2)?sp(3) bonding changes as well as peculiar oscillations of electronic property (e.g., semiconducting?metallic?semiconducting transitions). These polymerized nanotubes show versatile and superior physical properties, such as superhardness, high tensile strength and ductility, and tunable electronic properties (semiconducting or metallic).

SUBMITTER: Hu M 

PROVIDER: S-EPMC3580323 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Compressed carbon nanotubes: a family of new multifunctional carbon allotropes.

Hu Meng M   Zhao Zhisheng Z   Tian Fei F   Oganov Artem R AR   Wang Qianqian Q   Xiong Mei M   Fan Changzeng C   Wen Bin B   He Julong J   Yu Dongli D   Wang Hui-Tian HT   Xu Bo B   Tian Yongjun Y  

Scientific reports 20130101


The exploration of novel functional carbon polymorphs is an enduring topic of scientific investigations. In this paper, we present simulations demonstrating metastable carbon phases as the result of pressure induced carbon nanotube polymerization. The configuration, bonding, electronic, and mechanical characteristics of carbon polymers strongly depend on the imposed hydrostatic/non-hydrostatic pressure, as well as on the geometry of the raw carbon nanotubes including diameter, chirality, stackin  ...[more]

Similar Datasets

| S-EPMC5300697 | biostudies-other
| S-EPMC3810657 | biostudies-literature
| S-EPMC8739842 | biostudies-literature
| S-EPMC10987552 | biostudies-literature
| S-EPMC6404038 | biostudies-literature
| S-EPMC5113780 | biostudies-literature
| S-EPMC7995575 | biostudies-literature
| S-EPMC1187972 | biostudies-literature
| S-EPMC10912223 | biostudies-literature
| S-EPMC9056768 | biostudies-literature