Unknown

Dataset Information

0

Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells.


ABSTRACT: Protein methyltransferases (PMTs) have emerged as important epigenetic regulators in myriad biological processes in both normal physiology and disease conditions. However, elucidating PMT-regulated epigenetic processes has been hampered by ambiguous knowledge about in vivo activities of individual PMTs particularly because of their overlapping but nonredundant functions. To address limitations of conventional approaches in mapping chromatin modification of specific PMTs, we have engineered the chromatin-modifying apparatus and formulated a novel technology, termed clickable chromatin enrichment with parallel DNA sequencing (CliEn-seq), to probe genome-wide chromatin modification within living cells. The three-step approach of CliEn-seq involves in vivo synthesis of S-adenosyl-L-methionine (SAM) analogues from cell-permeable methionine analogues by engineered SAM synthetase (methionine adenosyltransferase or MAT), in situ chromatin modification by engineered PMTs, subsequent enrichment and sequencing of the uniquely modified chromatins. Given critical roles of the chromatin-modifying enzymes in epigenetics and structural similarity among many PMTs, we envision that the CliEn-seq technology is generally applicable in deciphering chromatin methylation events of individual PMTs in diverse biological settings.

SUBMITTER: Wang R 

PROVIDER: S-EPMC3582175 | biostudies-literature | 2013 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells.

Wang Rui R   Islam Kabirul K   Liu Ying Y   Zheng Weihong W   Tang Haiping H   Lailler Nathalie N   Blum Gil G   Deng Haiteng H   Luo Minkui M  

Journal of the American Chemical Society 20130110 3


Protein methyltransferases (PMTs) have emerged as important epigenetic regulators in myriad biological processes in both normal physiology and disease conditions. However, elucidating PMT-regulated epigenetic processes has been hampered by ambiguous knowledge about in vivo activities of individual PMTs particularly because of their overlapping but nonredundant functions. To address limitations of conventional approaches in mapping chromatin modification of specific PMTs, we have engineered the c  ...[more]

Similar Datasets

2013-03-04 | E-GEOD-42792 | biostudies-arrayexpress
2013-03-04 | GSE42792 | GEO
| S-EPMC5578878 | biostudies-literature
| S-EPMC7874078 | biostudies-literature
| S-EPMC3900404 | biostudies-literature
| S-EPMC4756854 | biostudies-other
| S-EPMC8177051 | biostudies-literature
| S-EPMC10895462 | biostudies-literature
| S-EPMC4760882 | biostudies-literature
| S-EPMC5749185 | biostudies-literature