Unknown

Dataset Information

0

Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruzi infection process.


ABSTRACT: Mammalian cell invasion by the protozoan parasite Trypanosoma cruzi involves host cell microtubule dynamics. Microtubules support kinesin-dependent anterograde trafficking of host lysosomes to the cell periphery where targeted lysosome exocytosis elicits remodelling of the plasma membrane and parasite invasion. Here, a novel role for microtubule plus-end tracking proteins (+TIPs) in the co-ordination of T. cruzi trypomastigote internalization and post-entry events is reported. Acute silencing of CLASP1, a +TIP that participates in microtubule stabilization at the cell periphery, impairs trypomastigote internalization without diminishing the capacity for calcium-regulated lysosome exocytosis. Subsequent fusion of the T. cruzi vacuole with host lysosomes and its juxtanuclear positioning are also delayed in CLASP1-depleted cells. These post-entry phenotypes correlate with a generalized impairment of minus-end directed transport of lysosomes in CLASP1 knock-down cells and mimic the effects of dynactin disruption. Consistent with GSK3? acting as a negative regulator of CLASP function, inhibition of GSK3? activity enhances T. cruzi entry in a CLASP1-dependent manner and expression of constitutively active GSK3? dampens infection. This study provides novel molecular insights into the T. cruzi infection process, emphasizing functional links between parasite-elicited signalling, host microtubule plus-end tracking proteins and dynein-based retrograde transport. Highlighted in this work is a previously unrecognized role for CLASPs in dynamic lysosome positioning, an important aspect of the nutrient sensing response in mammalian cells.

SUBMITTER: Zhao X 

PROVIDER: S-EPMC3582772 | biostudies-literature | 2013 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruzi infection process.

Zhao Xiaoyan X   Kumar Praveen P   Shah-Simpson Sheena S   Caradonna Kacey L KL   Galjart Niels N   Teygong Crystal C   Blader Ira I   Wittmann Torsten T   Burleigh Barbara A BA  

Cellular microbiology 20121120 4


Mammalian cell invasion by the protozoan parasite Trypanosoma cruzi involves host cell microtubule dynamics. Microtubules support kinesin-dependent anterograde trafficking of host lysosomes to the cell periphery where targeted lysosome exocytosis elicits remodelling of the plasma membrane and parasite invasion. Here, a novel role for microtubule plus-end tracking proteins (+TIPs) in the co-ordination of T. cruzi trypomastigote internalization and post-entry events is reported. Acute silencing of  ...[more]

Similar Datasets

| S-EPMC2171674 | biostudies-literature
| S-EPMC2946434 | biostudies-literature
| S-EPMC379274 | biostudies-literature
| S-EPMC6408308 | biostudies-literature
| S-EPMC2626730 | biostudies-literature
| S-EPMC3115796 | biostudies-literature
| S-EPMC4214782 | biostudies-literature
| S-EPMC6754230 | biostudies-literature
| S-EPMC5800807 | biostudies-literature
| S-EPMC9974511 | biostudies-literature