Unknown

Dataset Information

0

Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production.


ABSTRACT: BACKGROUND:Many microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but do not have the capability to produce a large amount of ethanol. Thus, attempts have been made to transform such enzymes into fermentative microbes to serve as hosts for ethanol production. However, an efficient host for a consolidated bioprocess (CBP) remains to be found. For this purpose, a synthetic biology technique that can transform multiple genes into a genome is instrumental. Moreover, a strategy to select cellulases that interact synergistically is needed. RESULTS:To engineer a yeast for CBP bio-ethanol production, a synthetic biology technique, called "promoter-based gene assembly and simultaneous overexpression" (PGASO), that can simultaneously transform and express multiple genes in a kefir yeast, Kluyveromyces marxianus KY3, was recently developed. To formulate an efficient cellulase cocktail, a filter-paper-activity assay for selecting heterologous cellulolytic enzymes was established in this study and used to select five cellulase genes, including two cellobiohydrolases, two endo-?-1,4-glucanases and one beta-glucosidase genes from different fungi. In addition, a fungal cellodextrin transporter gene was chosen to transport cellodextrin into the cytoplasm. These six genes plus a selection marker gene were one-step assembled into the KY3 genome using PGASO. Our experimental data showed that the recombinant strain KR7 could express the five heterologous cellulase genes and that KR7 could convert crystalline cellulose into ethanol. CONCLUSION:Seven heterologous genes, including five cellulases, a cellodextrin transporter and a selection marker, were simultaneously transformed into the KY3 genome to derive a new strain, KR7, which could directly convert cellulose to ethanol. The present study demonstrates the potential of our strategy of combining a cocktail formulation protocol and a synthetic biology technique to develop a designer yeast host.

SUBMITTER: Chang JJ 

PROVIDER: S-EPMC3599373 | biostudies-literature | 2013 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production.

Chang Jui-Jen JJ   Ho Feng-Ju FJ   Ho Cheng-Yu CY   Wu Yueh-Chin YC   Hou Yu-Han YH   Huang Chieh-Chen CC   Shih Ming-Che MC   Li Wen-Hsiung WH   Li Wen-Hsiung WH  

Biotechnology for biofuels 20130204 1


<h4>Background</h4>Many microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but do not have the capability to produce a large amount of ethanol. Thus, attempts have been made to transform such enzymes into fermentative microbes to serve as hosts for ethanol production. However, an efficient host for a consolidated bioprocess (CBP) remains to be found. For this purpose, a synthetic biology technique that can transform multiple genes into a genome is instrumental  ...[more]

Similar Datasets

| S-EPMC4294501 | biostudies-literature
2014-11-13 | GSE60004 | GEO
2014-11-13 | E-GEOD-60004 | biostudies-arrayexpress
| S-EPMC3716962 | biostudies-literature
| S-EPMC3359315 | biostudies-literature
| S-EPMC5534209 | biostudies-literature
| S-EPMC7020610 | biostudies-literature
| S-EPMC6052021 | biostudies-literature
| S-EPMC6191481 | biostudies-literature
| S-EPMC4738253 | biostudies-literature