Unknown

Dataset Information

0

Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.


ABSTRACT: In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

SUBMITTER: Chasman DI 

PROVIDER: S-EPMC3607468 | biostudies-literature | 2012 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

Chasman Daniel I DI   Fuchsberger Christian C   Pattaro Cristian C   Teumer Alexander A   Böger Carsten A CA   Endlich Karlhans K   Olden Matthias M   Chen Ming-Huei MH   Tin Adrienne A   Taliun Daniel D   Li Man M   Gao Xiaoyi X   Gorski Mathias M   Yang Qiong Q   Hundertmark Claudia C   Foster Meredith C MC   O'Seaghdha Conall M CM   Glazer Nicole N   Isaacs Aaron A   Liu Ching-Ti CT   Smith Albert V AV   O'Connell Jeffrey R JR   Struchalin Maksim M   Tanaka Toshiko T   Li Guo G   Johnson Andrew D AD   Gierman Hinco J HJ   Feitosa Mary F MF   Hwang Shih-Jen SJ   Atkinson Elizabeth J EJ   Lohman Kurt K   Cornelis Marilyn C MC   Johansson Asa A   Tönjes Anke A   Dehghan Abbas A   Lambert Jean-Charles JC   Holliday Elizabeth G EG   Sorice Rossella R   Kutalik Zoltan Z   Lehtimäki Terho T   Esko Tõnu T   Deshmukh Harshal H   Ulivi Sheila S   Chu Audrey Y AY   Murgia Federico F   Trompet Stella S   Imboden Medea M   Coassin Stefan S   Pistis Giorgio G   Harris Tamara B TB   Launer Lenore J LJ   Aspelund Thor T   Eiriksdottir Gudny G   Mitchell Braxton D BD   Boerwinkle Eric E   Schmidt Helena H   Cavalieri Margherita M   Rao Madhumathi M   Hu Frank F   Demirkan Ayse A   Oostra Ben A BA   de Andrade Mariza M   Turner Stephen T ST   Ding Jingzhong J   Andrews Jeanette S JS   Freedman Barry I BI   Giulianini Franco F   Koenig Wolfgang W   Illig Thomas T   Meisinger Christa C   Gieger Christian C   Zgaga Lina L   Zemunik Tatijana T   Boban Mladen M   Minelli Cosetta C   Wheeler Heather E HE   Igl Wilmar W   Zaboli Ghazal G   Wild Sarah H SH   Wright Alan F AF   Campbell Harry H   Ellinghaus David D   Nöthlings Ute U   Jacobs Gunnar G   Biffar Reiner R   Ernst Florian F   Homuth Georg G   Kroemer Heyo K HK   Nauck Matthias M   Stracke Sylvia S   Völker Uwe U   Völzke Henry H   Kovacs Peter P   Stumvoll Michael M   Mägi Reedik R   Hofman Albert A   Uitterlinden Andre G AG   Rivadeneira Fernando F   Aulchenko Yurii S YS   Polasek Ozren O   Hastie Nick N   Vitart Veronique V   Helmer Catherine C   Wang Jie Jin JJ   Stengel Bénédicte B   Ruggiero Daniela D   Bergmann Sven S   Kähönen Mika M   Viikari Jorma J   Nikopensius Tiit T   Province Michael M   Ketkar Shamika S   Colhoun Helen H   Doney Alex A   Robino Antonietta A   Krämer Bernhard K BK   Portas Laura L   Ford Ian I   Buckley Brendan M BM   Adam Martin M   Thun Gian-Andri GA   Paulweber Bernhard B   Haun Margot M   Sala Cinzia C   Mitchell Paul P   Ciullo Marina M   Kim Stuart K SK   Vollenweider Peter P   Raitakari Olli O   Metspalu Andres A   Palmer Colin C   Gasparini Paolo P   Pirastu Mario M   Jukema J Wouter JW   Probst-Hensch Nicole M NM   Kronenberg Florian F   Toniolo Daniela D   Gudnason Vilmundur V   Shuldiner Alan R AR   Coresh Josef J   Schmidt Reinhold R   Ferrucci Luigi L   Siscovick David S DS   van Duijn Cornelia M CM   Borecki Ingrid B IB   Kardia Sharon L R SL   Liu Yongmei Y   Curhan Gary C GC   Rudan Igor I   Gyllensten Ulf U   Wilson James F JF   Franke Andre A   Pramstaller Peter P PP   Rettig Rainer R   Prokopenko Inga I   Witteman Jacqueline J   Hayward Caroline C   Ridker Paul M PM   Parsa Afshin A   Bochud Murielle M   Heid Iris M IM   Kao W H Linda WH   Fox Caroline S CS   Köttgen Anna A  

Human molecular genetics 20120908 24


In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that ar  ...[more]

Similar Datasets

| S-EPMC9345823 | biostudies-literature
| S-EPMC3778004 | biostudies-literature
| S-EPMC5668367 | biostudies-literature
| S-EPMC3585126 | biostudies-literature
| S-EPMC6694136 | biostudies-literature
| S-EPMC1481625 | biostudies-literature
| S-EPMC4579430 | biostudies-literature
| S-EPMC2795984 | biostudies-literature
| S-EPMC9892769 | biostudies-literature
| S-EPMC8088054 | biostudies-literature