Microstructured titanium regulates interleukin production by osteoblasts, an effect modulated by exogenous BMP-2.
Ontology highlight
ABSTRACT: Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on the osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra=0.2?m), sandblasted/acid-etched (SLA, Ra=3.2?m) or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blockSmad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol) or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration.
SUBMITTER: Hyzy SL
PROVIDER: S-EPMC3618455 | biostudies-literature | 2013 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA