Unknown

Dataset Information

0

Unique contribution of IRF-5-Ikaros axis to the B-cell IgG2a response.


ABSTRACT: IRF-5 is a transcription factor activated by toll like receptor (TLR)7 and TLR9 during innate immune responses. IRF-5 activates not only Type I IFN, but also inflammatory cytokines. Most importantly, a genetic variation in the IRF-5 gene shows a strong association with autoimmune diseases such as Lupus. Here, we report that IRF5-deficient mice have attenuated IgG2a/c responses to T-cell-dependent and -independent antigens and to polyoma virus infection. This defect is due to the intrinsic deletion of IRF-5 in B cells, as SCID mice reconstituted with Irf5-/- B cells show a decrease in IgG2a/c expression after viral infection compared with mice that received wild-type B cells. Irf5-/-B cells in vitro have diminished TLR and cytokine-induced class switching to IgG2a/c. Addressing the molecular mechanism, we show that IRF-5 regulates IgG2a/c expression by decreasing Ikaros expression; reconstitution of IRF-5 in Irf5-/- B cells downregulates Ikaros levels and increases switching to IgG2a/c. The IRF site in ikzf1 promoter binds IRF-5, IRF-4 and IRF-8. We show that IRF-8 but not IRF-4 activates the ikzf1 promoter, and IRF-5 inhibits the transcriptional activity of IRF-8. Collectively, these results identify the IRF-5-Ikaros axis as a critical modulator of IgG2a/c class switching.

SUBMITTER: Fang CM 

PROVIDER: S-EPMC3628768 | biostudies-literature | 2012 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unique contribution of IRF-5-Ikaros axis to the B-cell IgG2a response.

Fang C-M CM   Roy S S   Nielsen E E   Paul M M   Maul R R   Paun A A   Koentgen F F   Raval F M FM   Szomolanyi-Tsuda E E   Pitha P M PM  

Genes and immunity 20120426 5


IRF-5 is a transcription factor activated by toll like receptor (TLR)7 and TLR9 during innate immune responses. IRF-5 activates not only Type I IFN, but also inflammatory cytokines. Most importantly, a genetic variation in the IRF-5 gene shows a strong association with autoimmune diseases such as Lupus. Here, we report that IRF5-deficient mice have attenuated IgG2a/c responses to T-cell-dependent and -independent antigens and to polyoma virus infection. This defect is due to the intrinsic deleti  ...[more]

Similar Datasets

| S-EPMC5915997 | biostudies-literature
| S-EPMC3784535 | biostudies-literature
| S-EPMC2593445 | biostudies-literature
| S-EPMC3405023 | biostudies-literature
| S-EPMC3536698 | biostudies-literature
| S-EPMC3923402 | biostudies-literature
| S-EPMC133824 | biostudies-literature
| S-EPMC3139384 | biostudies-literature
| S-EPMC316626 | biostudies-literature