Unknown

Dataset Information

0

Mutagenic analysis in a pure molecular system shows that thioredoxin-interacting protein residue Cys247 is necessary and sufficient for a mixed disulfide formation with thioredoxin.


ABSTRACT: The human thioredoxin (TRX)-interacting protein is found in multiple subcellular compartments and plays a major role in redox homeostasis, particularly in the context of metabolism (e.g., lipidemia and glycemia) and apoptosis. A molecular approach to the protein's modus operandi is still needed because some aspects of the TRX-interacting protein-mediated regulation of TRX are not clearly understood. To this end, His-tagged TRX-interacting proteins were over-expressed in Escherichia coli. Because the protein is expressed mainly in inclusion bodies, it was denatured in high concentrations of guanidium hydrochloride, centrifuged, and purified by Ni-NTA affinity chromatography. His-TRX-interacting protein was then refolded by dialysis and its restructuring monitored by circular dichroism spectrometry. This preparation resulted in the formation of a covalent complex with recombinant human TRX, demonstrating that association occurs without the intervention of other partner proteins. Multiple cysteine-to-serine mutants of TRX-interacting protein were produced and purified. These mutations were efficient in limiting the formation of disulfide-linked homo-oligomers in an oxidizing environment. The mutants were also used to gain functional insight into the formation of the TRX-interacting protein-TRX complexes. These complexes were able to form in the absence of internal disulfide bridges. A mutant with all but one cysteine changed to serine (Cys ²??) also showed an enhanced capacity to form complexes with TRX demonstrating, in a pure molecular system, that this particular cysteine is likely responsible for the disulfide bridge between TRX-interacting protein and TRX.

SUBMITTER: Fould B 

PROVIDER: S-EPMC3631361 | biostudies-literature | 2012 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mutagenic analysis in a pure molecular system shows that thioredoxin-interacting protein residue Cys247 is necessary and sufficient for a mixed disulfide formation with thioredoxin.

Fould Benjamin B   Lamamy Véronique V   Guenin Sophie-Penelope SP   Ouvry Christine C   Cogé Francis F   Boutin Jean A JA   Ferry Gilles G  

Protein science : a publication of the Protein Society 20120809 9


The human thioredoxin (TRX)-interacting protein is found in multiple subcellular compartments and plays a major role in redox homeostasis, particularly in the context of metabolism (e.g., lipidemia and glycemia) and apoptosis. A molecular approach to the protein's modus operandi is still needed because some aspects of the TRX-interacting protein-mediated regulation of TRX are not clearly understood. To this end, His-tagged TRX-interacting proteins were over-expressed in Escherichia coli. Because  ...[more]

Similar Datasets

| S-EPMC2714181 | biostudies-literature
| S-EPMC4203352 | biostudies-literature
| S-EPMC1609191 | biostudies-literature
2024-02-10 | GSE255055 | GEO
| S-EPMC2667727 | biostudies-literature
| S-EPMC2896474 | biostudies-literature
2008-11-20 | GSE11650 | GEO
| S-EPMC3190721 | biostudies-literature
| S-EPMC3482645 | biostudies-literature
| S-EPMC8277763 | biostudies-literature