Unknown

Dataset Information

0

A carrier-assisted ChIP-seq method for estrogen receptor-chromatin interactions from breast cancer core needle biopsy samples.


ABSTRACT: BACKGROUND:The Estrogen Receptor alpha (ER?) is the key transcriptional regulator in luminal breast cancer and is therefore the main target for adjuvant treatment of this subtype. Luminal gene signatures are dictated by the transcriptional capacities of ER?, which are a direct consequence of the receptors binding preference at specific sites on the chromatin. The identification of ER? binding signatures on a genome-wide level has greatly enhanced our understanding of Estrogen Receptor biology in cell lines and tumours, but the technique has its limitations with respect to its applicability in limited amounts of tumour tissue. RESULTS:Here, we present a refinement of the ChIP-seq procedures to enable transcription factor mapping on limited amounts of tissue culture cells as well as from a limited amount of tumor tissue derived from core needle biopsies. Our approach uses a carrier that can be removed prior to DNA amplification and sequencing. CONCLUSION:We illustrate the applicability of this refined technology by mapping the ER? genome-wide chromatin binding landscape in core needle biopsy material from primary breast tumours. With this, our refined technology permits for a high-resolution transcription factor mapping even from clinical samples.

SUBMITTER: Zwart W 

PROVIDER: S-EPMC3637562 | biostudies-literature | 2013 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

A carrier-assisted ChIP-seq method for estrogen receptor-chromatin interactions from breast cancer core needle biopsy samples.

Zwart Wilbert W   Koornstra Rutger R   Wesseling Jelle J   Rutgers Emiel E   Linn Sabine S   Carroll Jason S JS  

BMC genomics 20130408


<h4>Background</h4>The Estrogen Receptor alpha (ERα) is the key transcriptional regulator in luminal breast cancer and is therefore the main target for adjuvant treatment of this subtype. Luminal gene signatures are dictated by the transcriptional capacities of ERα, which are a direct consequence of the receptors binding preference at specific sites on the chromatin. The identification of ERα binding signatures on a genome-wide level has greatly enhanced our understanding of Estrogen Receptor bi  ...[more]

Similar Datasets

2013-04-01 | E-MTAB-1534 | biostudies-arrayexpress
| PRJEB1564 | ENA
| S-EPMC5143423 | biostudies-literature
| S-EPMC3834794 | biostudies-literature
| S-EPMC4447067 | biostudies-literature
| S-EPMC7599384 | biostudies-literature
2021-09-03 | GSE166570 | GEO
| S-EPMC8325110 | biostudies-literature
| S-EPMC6567405 | biostudies-literature
| S-EPMC10562690 | biostudies-literature