Testosterone-related cortical maturation across childhood and adolescence.
Ontology highlight
ABSTRACT: Neuroendocrine theories of brain development hold testosterone as the predominant factor mediating sex-specific cortical growth and the ensuing lateralization of hemispheric function. However, studies to date have focussed on prenatal testosterone rather than pubertal changes in testosterone. Yet, animal studies have shown a high density of androgen-sensitive receptors in multiple key cortical areas, and puberty is known to coincide with both a significant rise in testosterone and the emergence of behavioral sex differences, suggesting peripubertal influences of testosterone on brain development. Here, we used linear mixed models to examine sex-specific cortical maturation associated with changes in testosterone levels in a longitudinal sample of developmentally healthy children and adolescents. A significant "sex by age by testosterone" interaction on cortical thickness (CTh) involving widespread areas of the developing brain was found. Testosterone levels were associated with CTh changes in regions of the left hemisphere in males and of the right hemisphere in females. In both sexes, the relationship between testosterone and CTh varied across the age span. These findings show the association between testosterone and CTh to be complex, highly dynamic, and to vary, depending on sex and age; they also suggest sex-related hemispheric lateralization effects of testosterone in humans.
SUBMITTER: Nguyen TV
PROVIDER: S-EPMC3643718 | biostudies-literature | 2013 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA