Comparative proteome analysis of Tumor necrosis factor ?-stimulated human Vascular Smooth Muscle Cells in response to melittin.
Ontology highlight
ABSTRACT: BACKGROUND:Bee venom has been used to relieve pain and to treat inflammatory diseases, including rheumatoid arthritis, in humans. To better understand the mechanisms of the anti-inflammatory and anti-atherosclerosis effect of bee venom, gel electrophoresis and mass spectrometry were used to identify proteins whose expression was altered in human Vascular Smooth Muscle Cells (hVSMCs) stimulated by tumor necrosis factor alpha after 12 h in the presence of melittin. RESULTS:To obtain valuable insights into the anti-inflammatory and anti-atherosclerosis mechanisms of melittin, two-dimensional (2-D) gel electrophoresis and MALDI-TOF/TOF were used. The proteome study, we showed 33 significant proteins that were differentially expressed in the cells treated with tumor necrosis factor alpha and melittin. Thirteen proteins were significantly increased in the cells treated with tumor necrosis factor alpha, and those proteins were reduced in the cells treated with melittin. Five of the proteins that showed increased expression in the cells treated with tumor necrosis factor alpha are involved in cell migration, including calreticulin, an essential factor of development that plays a role in transcription regulation. The proteins involved in cell migration were reduced in the melittin treated cells. The observed changes in the expression of GRP75, prohibitin, and a select group of other proteins were validated with reverse transcribed-PCR. It was confirmed that the observed change in the protein levels reflected a change in the genes level. In addition, the phosphorylation of EGFR and ERK was validated by analyzing the protein pathway. CONCLUSION:Taken together, these data established that the expression of some proteins was significantly changed by melittin treatment in tumor necrosis factor alpha stimulated the cells and provided insights into the mechanism of the melittin function for its potential use as an anti-inflammatory agent.
SUBMITTER: Cho HJ
PROVIDER: S-EPMC3655938 | biostudies-literature | 2013 May
REPOSITORIES: biostudies-literature
ACCESS DATA