Calcium causes a conformational change in lamin A tail domain that promotes farnesyl-mediated membrane association.
Ontology highlight
ABSTRACT: Lamin proteins contribute to nuclear structure and function, primarily at the inner nuclear membrane. The posttranslational processing pathway of lamin A includes farnesylation of the C-terminus, likely to increase membrane association, and subsequent proteolytic cleavage of the C-terminus. Hutchinson Gilford progeria syndrome is a premature aging disorder wherein a mutant version of lamin A, ?50 lamin A, retains its farnesylation. We report here that membrane association of farnesylated ?50 lamin A tail domains requires calcium. Experimental evidence and molecular dynamics simulations collectively suggest that the farnesyl group is sequestered within a hydrophobic region in the tail domain in the absence of calcium. Calcium binds to the tail domain with an affinity KD ? 250 ?M where it alters the structure of the Ig-fold and increases the solvent accessibility of the C-terminus. In 2 mM CaCl2, the affinity of the farnesylated protein to a synthetic membrane is KD ? 2 ?M, as measured with surface plasmon resonance, but showed a combination of aggregation and binding. Membrane binding in the absence of calcium could not be detected. We suggest that a conformational change induced in ?50 lamin A with divalent cations plays a regulatory role in the posttranslational processing of lamin A, which may be important in disease pathogenesis.
SUBMITTER: Kalinowski A
PROVIDER: S-EPMC3660631 | biostudies-literature | 2013 May
REPOSITORIES: biostudies-literature
ACCESS DATA