Membrane-induced conformational change in human apolipoprotein H.
Ontology highlight
ABSTRACT: The interaction of apolipoprotein H (Apo H) with lipid membrane has been considered to be a basic mechanism for the biological function of the protein. Previous reports have demonstrated that Apo H can interact only with membranes containing anionic phospholipids. Here we study the membrane-induced conformational change of Apo H by CD spectroscopy with two different model systems: anionic-phospholipid-containing liposomes [such as 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and cardiolipin], and the water/methanol mixtures at moderately low pH, which mimic the micro-physicochemical environment near the membrane surface. It is found that Apo H undergoes a remarkable conformational change on interaction with liposomes containing anionic phospholipid. To interact with liposomes containing DMPG, there is a 6.8% increase in alpha-helix in the secondary structures; in liposomes containing cardiolipin, however, there is a 12.6% increase in alpha-helix and a 9% decrease in beta-sheet. The similar conformation change in Apo H can be induced by treatment with an appropriate mixture of water/methanol. The results indicate that the association of Apo H with membrane is correlated with a certain conformational change in the secondary structure of the protein.
SUBMITTER: Wang SX
PROVIDER: S-EPMC1221041 | biostudies-other | 2000 May
REPOSITORIES: biostudies-other
ACCESS DATA