Ontology highlight
ABSTRACT: Objective
Streptococcus agalactiae (GBS) is an important cause of chorioamnionitis. This study characterizes GBS colonization and stimulation of antimicrobial responses in human extraplacental membranes using an ex vivo transwell two-compartment system of full-thickness membranes and live GBS.Study design
Human extraplacental membranes were affixed to transwell frames (without synthetic membranes). Live GBS was added to the decidual side of membranes in transwell cultures, and cocultures were incubated for 4, 8 and 24 h. GBS recovery from homogenized membranes and culture medium was determined by enumerating colony forming units (CFU) on blood agar. Antimicrobial peptide expression was identified using immunohistochemistry and ELISA. GBS killing by HBDs was assessed in vitro by incubating GBS with different human beta defensins (HBDs) for 3 h, then enumerating CFU.Results
GBS recovery from membranes markedly decreased over time (P < 0.05). The antimicrobial peptides HBD-1, HBD-2, HBD-3, and lactoferrin were expressed in both GBS-exposed and non-exposed tissues. Notably, a pattern of localized increased HBD-2 in the amnion of GBS-infected tissue was observed. Moreover, GBS-treated membranes released increased amounts of HBD-2 into the amniotic and decidual compartments of the transwell cultures after 24 h (P < 0.05). In bacterial cultures, HBD-2 decreased GBS viability in a concentration-dependent manner (P < 0.05).Conclusion
Innate immune responses in ex vivo human extraplacental membranes suppress GBS growth. HBD-2 was implicated in this GBS suppression with evidence of signal transduction across the tissue. Antimicrobial peptides may be important for innate immune defense against intrauterine GBS infections during pregnancy.
SUBMITTER: Boldenow E
PROVIDER: S-EPMC3664555 | biostudies-literature | 2013 Jun
REPOSITORIES: biostudies-literature
Boldenow E E Jones S S Lieberman R W RW Chames M C MC Aronoff D M DM Xi C C Loch-Caruso R R
Placenta 20130402 6
<h4>Objective</h4>Streptococcus agalactiae (GBS) is an important cause of chorioamnionitis. This study characterizes GBS colonization and stimulation of antimicrobial responses in human extraplacental membranes using an ex vivo transwell two-compartment system of full-thickness membranes and live GBS.<h4>Study design</h4>Human extraplacental membranes were affixed to transwell frames (without synthetic membranes). Live GBS was added to the decidual side of membranes in transwell cultures, and co ...[more]