Unknown

Dataset Information

0

Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications.


ABSTRACT: Myosin filaments of muscle are regulated either by phosphorylation of their regulatory light chains or Ca(2+) binding to the essential light chains, contributing to on-off switching or modulation of contraction. Phosphorylation-regulated filaments in the relaxed state are characterized by an asymmetric interaction between the two myosin heads, inhibiting their actin binding or ATPase activity. Here, we have tested whether a similar interaction switches off activity in myosin filaments regulated by Ca(2+) binding. Cryo-electron microscopy and single-particle image reconstruction of Ca(2+)-regulated (scallop) filaments reveals a helical array of myosin head-pair motifs above the filament surface. Docking of atomic models of scallop myosin head domains into the motifs reveals that the heads interact in a similar way to those in phosphorylation-regulated filaments. The results imply that the two major evolutionary branches of myosin regulation--involving phosphorylation or Ca(2+) binding--share a common structural mechanism for switching off thick-filament activity in relaxed muscle. We suggest that the Ca(2+)-binding mechanism evolved from the more ancient phosphorylation-based system to enable rapid response of myosin-regulated muscles to activation. Although the motifs are similar in both systems, the scallop structure is more tilted and higher above the filament backbone, leading to different intermolecular interactions. The reconstruction reveals how the myosin tail emerges from the motif, connecting the heads to the filament backbone, and shows that the backbone is built from supramolecular assemblies of myosin tails. The reconstruction provides a native structural context for understanding past biochemical and biophysical studies of this model Ca(2+)-regulated myosin.

SUBMITTER: Woodhead JL 

PROVIDER: S-EPMC3666738 | biostudies-literature | 2013 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications.

Woodhead John L JL   Zhao Fa-Qing FQ   Craig Roger R  

Proceedings of the National Academy of Sciences of the United States of America 20130506 21


Myosin filaments of muscle are regulated either by phosphorylation of their regulatory light chains or Ca(2+) binding to the essential light chains, contributing to on-off switching or modulation of contraction. Phosphorylation-regulated filaments in the relaxed state are characterized by an asymmetric interaction between the two myosin heads, inhibiting their actin binding or ATPase activity. Here, we have tested whether a similar interaction switches off activity in myosin filaments regulated  ...[more]

Similar Datasets

| S-EPMC4826325 | biostudies-literature
| S-EPMC5367448 | biostudies-literature
| S-EPMC10665186 | biostudies-literature
| S-EPMC1805582 | biostudies-literature
| S-EPMC6575167 | biostudies-literature
| S-EPMC4547144 | biostudies-literature
| S-EPMC4266557 | biostudies-literature
| S-EPMC6699511 | biostudies-literature
| S-EPMC4861668 | biostudies-literature
| S-EPMC9646518 | biostudies-literature