Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.
Ontology highlight
ABSTRACT: The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPAR?/? was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPAR?, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPAR?/? and PPAR? to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPAR?/? and PPAR? participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor ? (ERR?). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERR? on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.
SUBMITTER: Gan Z
PROVIDER: S-EPMC3668841 | biostudies-literature | 2013 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA