Unknown

Dataset Information

0

Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands.


ABSTRACT: Mammary gland epithelial cells undergo periodic cycles of proliferation, differentiation, and involution. Many studies have reported that miRNAs, which are small, non-coding RNAs, influence a variety of biological processes during posttranscriptional regulation. Here, we found that one miRNA, miR-200a, was relatively highly expressed in epithelial cell-rich organs such as mammary glands, lung, and kidney in mice. In mammary glands, miR-200a expression increased during mid-pregnancy through lactation; its expression was stimulated by lactogenic hormone treatment of mammary epithelial cells. Lactogenic hormone also induced the expression of milk protein ß-casein mRNA (a marker of cell differentiation) and E-cadherin mRNA (a marker of epithelial cells). However, knockdown of miR-200a prevented increases in ß-casein and E-cadherin mRNA expression. Protein analysis revealed that E-cadherin signal was decreased and ZEB1 (a marker of EMT) was increased following miR-200a knockdown. Finally, in a three-dimensional culture system modeling lumen-containing mammary ducts, miR-200a knockdown decreased the cavity formation rate and suppressed claudin-3 and par-6b expression, indicating reduced epithelial cell polarity. These observations suggest that miR-200a is important for maintaining the epithelial cell phenotype, which contributes to lactogenic hormone induction of cellular differentiation in mammary glands.

SUBMITTER: Nagaoka K 

PROVIDER: S-EPMC3672172 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands.

Nagaoka Kentaro K   Zhang Haolin H   Watanabe Gen G   Taya Kazuyoshi K  

PloS one 20130604 6


Mammary gland epithelial cells undergo periodic cycles of proliferation, differentiation, and involution. Many studies have reported that miRNAs, which are small, non-coding RNAs, influence a variety of biological processes during posttranscriptional regulation. Here, we found that one miRNA, miR-200a, was relatively highly expressed in epithelial cell-rich organs such as mammary glands, lung, and kidney in mice. In mammary glands, miR-200a expression increased during mid-pregnancy through lacta  ...[more]

Similar Datasets

| S-EPMC5854757 | biostudies-literature
| S-EPMC6767383 | biostudies-literature
| S-EPMC6832565 | biostudies-literature
| S-EPMC3138315 | biostudies-literature
| S-EPMC5256977 | biostudies-other
| S-EPMC4394461 | biostudies-literature
| S-EPMC10244402 | biostudies-literature
| S-EPMC2748963 | biostudies-literature
| S-EPMC2818197 | biostudies-literature
| S-EPMC5698406 | biostudies-literature