Unknown

Dataset Information

0

FlowMax: A Computational Tool for Maximum Likelihood Deconvolution of CFSE Time Courses.


ABSTRACT: The immune response is a concerted dynamic multi-cellular process. Upon infection, the dynamics of lymphocyte populations are an aggregate of molecular processes that determine the activation, division, and longevity of individual cells. The timing of these single-cell processes is remarkably widely distributed with some cells undergoing their third division while others undergo their first. High cell-to-cell variability and technical noise pose challenges for interpreting popular dye-dilution experiments objectively. It remains an unresolved challenge to avoid under- or over-interpretation of such data when phenotyping gene-targeted mouse models or patient samples. Here we develop and characterize a computational methodology to parameterize a cell population model in the context of noisy dye-dilution data. To enable objective interpretation of model fits, our method estimates fit sensitivity and redundancy by stochastically sampling the solution landscape, calculating parameter sensitivities, and clustering to determine the maximum-likelihood solution ranges. Our methodology accounts for both technical and biological variability by using a cell fluorescence model as an adaptor during population model fitting, resulting in improved fit accuracy without the need for ad hoc objective functions. We have incorporated our methodology into an integrated phenotyping tool, FlowMax, and used it to analyze B cells from two NF?B knockout mice with distinct phenotypes; we not only confirm previously published findings at a fraction of the expended effort and cost, but reveal a novel phenotype of nfkb1/p105/50 in limiting the proliferative capacity of B cells following B-cell receptor stimulation. In addition to complementing experimental work, FlowMax is suitable for high throughput analysis of dye dilution studies within clinical and pharmacological screens with objective and quantitative conclusions.

SUBMITTER: Shokhirev MN 

PROVIDER: S-EPMC3694893 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

FlowMax: A Computational Tool for Maximum Likelihood Deconvolution of CFSE Time Courses.

Shokhirev Maxim Nikolaievich MN   Hoffmann Alexander A  

PloS one 20130627 6


The immune response is a concerted dynamic multi-cellular process. Upon infection, the dynamics of lymphocyte populations are an aggregate of molecular processes that determine the activation, division, and longevity of individual cells. The timing of these single-cell processes is remarkably widely distributed with some cells undergoing their third division while others undergo their first. High cell-to-cell variability and technical noise pose challenges for interpreting popular dye-dilution e  ...[more]

Similar Datasets

2024-03-20 | GSE261769 | GEO
| S-EPMC3114465 | biostudies-literature
| S-EPMC8740018 | biostudies-literature
| S-EPMC2792768 | biostudies-literature
| S-EPMC6821337 | biostudies-literature
| S-EPMC1156870 | biostudies-literature
| S-EPMC5751574 | biostudies-literature
| S-EPMC8963701 | biostudies-literature
| S-EPMC4838635 | biostudies-literature
| S-EPMC5947773 | biostudies-literature