Acceleration of flowering in Arabidopsis thaliana by Cape Verde Islands alleles of FLOWERING H is dependent on the floral promoter FD.
Ontology highlight
ABSTRACT: Flowering time in the model plant Arabidopsis thaliana is regulated by both external environmental signals and internal developmental pathways. Natural variation at the FLOWERING H (FLH) locus has previously been described, with alleles present in the Cape Verde Islands accession causing early flowering, particularly after vernalization. The mechanism of FLH-induced early flowering is not understood. Here, the integration of FLH activity into the known flowering time pathways is described using molecular and genetic approaches. The identification of molecular markers that co-segregated with the FLH locus allowed the generation of multiple combinations of FLH alleles with mutations in flowering time genes in different flowering pathways. Combining an early flowering FLH allele with mutations in vernalization pathway genes that regulate FLC expression revealed that FLH appears to act in parallel to FLC. Surprisingly, the early flowering allele of FLH requires the floral integrator FD, but not FT, to accelerate flowering. This suggests a model in which some alleles of FLH are able to affect the FD-dependent activity of the floral activator complex.
Project description:The apid cuckoo bees of the Cape Verde Islands (Republic of Cape Verde) are reviewed and five species recognized, representing two genera. The ammobatine genus Chiasmognathus Engel (Nomadinae: Ammobatini), a specialized lineage of cleptoparasites of nomioidine bees is recorded for the first time. Chiasmognathus batelkaisp. n. is distinguished from mainland African and Asian species. The genus Thyreus Panzer (Apinae: Melectini) is represented by four species - Thyreus denoliisp. n., Thyreus batelkaisp. n., Thyreus schwarzisp. n., and Thyreus aistleitnerisp. n. Previous records of Thyreus scutellaris (Fabricius) from the islands were based on misidentifications.
Project description:Parasites represent ideal models for unravelling biogeographic patterns and mechanisms of diversification on islands. Both host-mediated dispersal and within-island adaptation can shape parasite island assemblages. In this study, we examined patterns of genetic diversity and structure of Ornithodoros seabird ticks within the Cape Verde Archipelago in relation to their global phylogeography. Contrary to expectations, ticks from multiple, geographically distant clades mixed within the archipelago. Trans-oceanic colonization via host movements probably explains high local tick diversity, contrasting with previous research that suggests little large-scale dispersal in these birds. Although host specificity was not obvious at a global scale, host-associated genetic structure was found within Cape Verde colonies, indicating that post-colonization adaptation to specific hosts probably occurs. These results highlight the role of host metapopulation dynamics in the evolutionary ecology and epidemiology of avian parasites and pathogens.
Project description:Glaresishespericula sp. n. from the Cape Verde Islands (Boa Vista Island) is described and its diagnostic characters are illustrated. The new species is compared with similar and probably closely related species Glaresiswalzlae Scholtz, 1983. The differential diagnosis is mainly based on the different shape of meso- and metatibiae.
Project description:The COVID-19 pandemic and its countermeasures radically affected the energy sector. Within a matter of days, whole countries were into lockdown causing the largest energy impact of the last decades. This study explores the pandemic and its effects on the isolated power systems of Cape Verde, a small island-based developing state in Africa. Historical data from 2013 to 2021 is combined with ARIMA-based forecasting to estimate a COVID-free scenario. The results show how the country’s electricity demand suffered a 10% drop distributed among the islands proportionally to GDP per capita. The energy mix was unaffected, but the lower demand motivated 6% less emissions. The reliability of the system improved with respect previous years, but the transmission losses increased by 5% due to energy theft caused by the severe economic crisis suffered in the archipelago. In that sense, the impact on revenue and energy sector workers was quite limited. Furthermore, we also studied the effects of the pandemic in other energy related sectors such as water desalination and transport. The recovery started in the third quarter of 2020 as marked by the increased electricity demand, but also with the rapid growth of passengers and goods in the transport sector.
Project description:Conservation of plant diversity on islands relies on a good knowledge of the taxonomy, distribution and genetic diversity of species. In recent decades, a combination of morphology- and DNA-based approaches has become the standard for investigating island plant lineages and this has led, in some cases, to the discovery of previously overlooked diversity, including 'cryptic species'. The flora of the Cape Verde archipelago in the North Atlantic is currently thought to comprise ∼740 vascular plant species, 92 of them endemics. Despite the fact that it is considered relatively well known, there has been a 12 % increase in the number of endemics in the last two decades. Relatively few of the Cape Verde plant lineages have been included in genetic studies so far and little is known about the patterns of diversification in the archipelago. Here we present an updated list for the endemic Cape Verde flora and analyse diversity patterns for three endemic plant lineages (Cynanchum, Globularia and Umbilicus) based on one nuclear (ITS) and four plastid DNA regions. In all three lineages, we find genetic variation. In Cynanchum, we find two distinct haplotypes with no clear geographical pattern, possibly reflecting different ploidy levels. In Globularia and Umbilicus, differentiation is evident between populations from northern and southern islands. Isolation and drift resulting from the small and fragmented distributions, coupled with the significant distances separating the northern and southern islands, could explain this pattern. Overall, our study suggests that the diversity in the endemic vascular flora of Cape Verde is higher than previously thought and further work is necessary to characterize the flora.
Project description:BackgroundWolbachia pipientis is an endosymbiont bacterium that induces cytoplasmic incompatibility and inhibits arboviral replication in mosquitoes. This study aimed to assess Wolbachia prevalence and genetic diversity in different mosquito species from Cape Verde.MethodsMosquitoes were collected on six islands of Cape Verde and identified to species using morphological keys and PCR-based assays. Wolbachia was detected by amplifying a fragment of the surface protein gene (wsp). Multilocus sequence typing (MLST) was performed with five housekeeping genes (coxA, gatB, ftsZ, hcpA, and fbpA) and the wsp hypervariable region (HVR) for strain identification. Identification of wPip groups (wPip-I to wPip-V) was performed using PCR-restriction fragment length polymorphism (RFLP) assay on the ankyrin domain gene pk1.ResultsNine mosquito species were collected, including the major vectors Aedes aegypti, Anopheles arabiensis, Culex pipiens sensu stricto, and Culex quinquefasciatus. Wolbachia was only detected in Cx. pipiens s.s. (100% prevalence), Cx. quinquefasciatus (98.3%), Cx. pipiens/quinquefasciatus hybrids (100%), and Culex tigripes (100%). Based on the results of MLST and wsp hypervariable region typing, Wolbachia from the Cx. pipiens complex was assigned to sequence type 9, wPip clade, and supergroup B. PCR/RFLP analysis revealed three wPip groups in Cape Verde, namely wPip-II, wPip-III, and wPip-IV. wPip-IV was the most prevalent, while wPip-II and wPip-III were found only on Maio and Fogo islands. Wolbachia detected in Cx. tigripes belongs to supergroup B, with no attributed MLST profile, indicating a new strain of Wolbachia in this mosquito species.ConclusionsA high prevalence and diversity of Wolbachia was found in species from the Cx. pipiens complex. This diversity may be related to the mosquito's colonization history on the Cape Verde islands. To the best of our knowledge, this is the first study to detect Wolbachia in Cx. tigripes, which may provide an additional opportunity for biocontrol initiatives.
Project description:In this work, the QuEChERS method coupled to liquid chromatography-time-of flight-mass spectrometry and gas chromatography-triple quadrupole-mass spectrometry were applied for the evaluation of pesticide residues and risk assessment in red wines. The methodologies were successfully validated for 173 pesticides. Recovery values were in the range 75-100% for almost all pesticides and limits of quantification were between 2.60 and 21.39 µg/kg, which are in good agreement with the maximum residue limits (MRLs) established by the European Commission for pesticides in wine grapes. Finally, the analysis of 84 red wine samples from the Canary Islands, the Iberian Peninsula, and Cape Verde was carried out, which found the presence of 31 pesticide residues. However, the risk assessment disclosed that despite the large number of pesticides and the concentrations found, which in some cases exceeded the MRLs, the consumption of these wines, without considering a possible cumulative effect, does not entail a risk to the consumers.
Project description:Marine Cone snails of the genus Conus contain complex peptide toxins in their venom. Living in tropical habitats, they usually use the powerful venom for self-defense and prey capture. Here, we study Conus crotchii venom duct using a peptide mass-matching approach. The C. crotchii was collected on the Cape Verde archipelago in the Boa Vista Island. The venom was analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). About 488 molecular masses between 700 Da and 3000 Da were searched bymatching with known peptide sequences from UniProtKB protein sequence database. Through this method we were able to identify 12 conopeptides. For validation we considered the error between the experimental molecular mass (monoisotopic) and the calculated mass of less than 0.5 Da. All conopeptides detected belong to the A-, O1-, O2-, O3-, T- and D-superfamilies, which can block Ca²? channels, inhibit K? channels and act on nicotinic acetylcholine receptors (nAChRs). Only a few of the detected peptides have a 100% UniProtKB database similarity, suggesting that several of them could be newly discovered marine drugs.
Project description:Cape Verde petrel (Pterodroma feae) is currently considered near threatened, but little is known about its population size, breeding biology and on land threats, jeopardizing its management and conservation. To improve this situation, we captured, marked and recaptured (CMR) birds using mist-nets over 10 years; measured and sexed them; monitored up to 14 burrows, deployed GPS devices on breeders and analyzed activity data of geolocators retrieved from breeders in Fogo (Cape Verde). We set cat traps over the colony and investigated their domestic/feral origin by marking domestic cats from a nearby village with transponders, by deploying GPS devices on domestic cats and by performing stable isotope analyses of fur of the trapped and domestic cats. The population of Fogo was estimated to be 293 birds, including immatures (95% CI: 233-254, CMR modelling). Based on geolocator activity data and nest monitoring we determined the breeding phenology of this species and we found biometric differences between sexes. While monitoring breeding performance, we verified a still ongoing cat predation and human harvesting. Overall, data gathered from trapped cats without transponder, cats GPS trips and the distinct isotopic values between domestic and trapped cats suggest cats visiting the colony are of feral origin. GPS tracks from breeders showed birds left and returned to the colony using the sector NE of the islands, where high level of public lights should be avoided specially during the fledging period. Main threats for the Cape Verde petrel in the remaining breeding islands are currently unknown but likely to be similar to Fogo, calling for an urgent assessment of population trends and the control of main threats in all Cape Verde Islands and uplisting its conservation status.
Project description:A Solanum species long considered an American introduction to the Cape Verde Islands off the west coast of Africa is identified as Solanum rigidum, a member of the Eggplant clade of Old World spiny solanums (Solanum subgenus Leptostemonum) and is probably endemic to the Cape Verde Islands. Collections of this species from the Caribbean are likely to have been introduced from the Cape Verde Islands on slave ships. We discuss the complex nomenclatural history of this plant and provide a detailed description, illustration and distribution map. The preliminary conservation status of Solanum rigidum is Least Concern, but needs to be reassessed in light of its endemic rather than introduced status.