Functional genomics of attention-deficit/hyperactivity disorder (ADHD) risk alleles on dopamine transporter binding in ADHD and healthy control subjects.
Ontology highlight
ABSTRACT: The main aim of this study was to examine the relationship between dopamine transporter (DAT) binding in the striatum in individuals with and without attention-deficit/hyperactivity disorder (ADHD), attending to the 3'-untranslated region of the gene (3'-UTR) and intron8 variable number of tandem repeats (VNTR) polymorphisms of the DAT (SLC6A3) gene.Subjects consisted of 68 psychotropic (including stimulant)-naïve and smoking-naïve volunteers between 18 and 55 years of age (ADHD n = 34; control subjects n = 34). Striatal DAT binding was measured with positron emission tomography with 11C altropane. Genotyping of the two DAT (SLC6A3) 3'-UTR and intron8 VNTRs used standard protocols.The gene frequencies of each of the gene polymorphisms assessed did not differ between the ADHD and control groups. The ADHD status (t = 2.99; p<.004) and 3'-UTR of SLC6A3 9 repeat carrier status (t = 2.74; p<.008) were independently and additively associated with increased DAT binding in the caudate. The ADHD status was associated with increased striatal (caudate) DAT binding regardless of 3'-UTR genotype, and 3'-UTR genotype was associated with increased striatal (caudate) DAT binding regardless of ADHD status. In contrast, there were no significant associations between polymorphisms of DAT intron8 or the 3'-UTR-intron8 haplotype with DAT binding.The 3'-UTR but not intron8 VNTR genotypes were associated with increased DAT binding in both ADHD patients and healthy control subjects. Both ADHD status and the 3'-UTR polymorphism status had an additive effect on DAT binding. Our findings suggest that an ADHD risk polymorphism (3'-UTR) of SLC6A3 has functional consequences on central nervous system DAT binding in humans.
SUBMITTER: Spencer TJ
PROVIDER: S-EPMC3700607 | biostudies-literature | 2013 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA