Unknown

Dataset Information

0

4-vinyl-substituted pyrimidine nucleosides exhibit the efficient and selective formation of interstrand cross-links with RNA and duplex DNA.


ABSTRACT: The formation of interstrand cross-links in nucleic acids can have a strong impact on biological function of nucleic acids; therefore, many cross-linking agents have been developed for biological applications. Despite numerous studies, there remains a need for cross-linking agents that exhibit both efficiency and selectivity. In this study, a 4-vinyl-substituted analog of thymidine (T-vinyl derivative) was designed as a new cross-linking agent, in which the vinyl group is oriented towards the Watson-Crick face to react with the amino group of an adenine base. The interstrand cross-link formed rapidly and selectively with a uridine on the RNA substrate at the site opposite to the T-vinyl derivative. A detailed analysis of cross-link formation while varying the flanking bases of the RNA substrates indicated that interstrand cross-link formation is preferential for the adenine base on the 5'-side of the opposing uridine. In the absence of a 5'-adenine, a uridine at the opposite position underwent cross-linking. The oligodeoxynucleotides probe incorporating the T-vinyl derivative efficiently formed interstrand cross-links in parallel-type triplex DNA with high selectivity for dA in the homopurine strand. The efficiency and selectivity of the T-vinyl derivative illustrate its potential use as a unique tool in biological and materials research.

SUBMITTER: Nishimoto A 

PROVIDER: S-EPMC3711451 | biostudies-literature | 2013 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

4-vinyl-substituted pyrimidine nucleosides exhibit the efficient and selective formation of interstrand cross-links with RNA and duplex DNA.

Nishimoto Atsushi A   Jitsuzaki Daichi D   Onizuka Kazumitsu K   Taniguchi Yosuke Y   Nagatsugi Fumi F   Sasaki Shigeki S  

Nucleic acids research 20130618 13


The formation of interstrand cross-links in nucleic acids can have a strong impact on biological function of nucleic acids; therefore, many cross-linking agents have been developed for biological applications. Despite numerous studies, there remains a need for cross-linking agents that exhibit both efficiency and selectivity. In this study, a 4-vinyl-substituted analog of thymidine (T-vinyl derivative) was designed as a new cross-linking agent, in which the vinyl group is oriented towards the Wa  ...[more]

Similar Datasets

| S-EPMC3525362 | biostudies-literature
| S-EPMC7116818 | biostudies-literature
| S-EPMC5499897 | biostudies-literature
| S-EPMC4404639 | biostudies-other
| S-EPMC4402519 | biostudies-literature
| S-EPMC6269699 | biostudies-literature
| S-EPMC4706233 | biostudies-literature
| S-EPMC2946157 | biostudies-other
| S-EPMC9322969 | biostudies-literature
| S-EPMC6172253 | biostudies-literature