Unknown

Dataset Information

0

Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons.


ABSTRACT: Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.

SUBMITTER: Fu X 

PROVIDER: S-EPMC3711551 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7204086 | biostudies-literature
| S-EPMC1550402 | biostudies-literature
| S-EPMC4707254 | biostudies-literature
| S-EPMC4450175 | biostudies-literature
| S-EPMC5507856 | biostudies-other
2022-12-22 | GSE189590 | GEO
| S-EPMC3549492 | biostudies-literature
| S-EPMC139363 | biostudies-literature
| S-EPMC4745138 | biostudies-literature
| S-EPMC10849918 | biostudies-literature