Single-cell phenomics reveals intra-species variation of phenotypic noise in yeast.
Ontology highlight
ABSTRACT: Most quantitative measures of phenotypic traits represent macroscopic contributions of large numbers of cells. Yet, cells of a tissue do not behave similarly, and molecular studies on several organisms have shown that regulations can be highly stochastic, sometimes generating diversified cellular phenotypes within tissues. Phenotypic noise, defined here as trait variability among isogenic cells of the same type and sharing a common environment, has therefore received a lot of attention. Given the potential fitness advantage provided by phenotypic noise in fluctuating environments, the possibility that it is directly subjected to evolutionary selection is being considered. For selection to act, phenotypic noise must differ between contemporary genotypes. Whether this is the case or not remains, however, unclear because phenotypic noise has very rarely been quantified in natural populations.Using automated image analysis, we describe here the phenotypic diversity of S. cerevisiae morphology at single-cell resolution. We profiled hundreds of quantitative traits in more than 1,000 cells of 37 natural strains, which represent various geographical and ecological origins of the species. We observed abundant trait variation between strains, with no correlation with their ecological origin or population history. Phenotypic noise strongly depended on the strain background. Noise variation was largely trait-specific (specific strains showing elevated noise for subset of traits) but also global (a few strains displaying elevated noise for many unrelated traits).Our results demonstrate that phenotypic noise does differ quantitatively between natural populations. This supports the possibility that, if noise is adaptive, microevolution may tune it in the wild. This tuning may happen on specific traits or by varying the degree of global phenotypic buffering.
SUBMITTER: Yvert G
PROVIDER: S-EPMC3711934 | biostudies-literature | 2013 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA