Project description:Maternal colostrum (MC) is an important source of nutrients and immune factors for newborn calves. However, when colostrum is unavailable or of poor quality, a colostrum replacer (CR) may be a suitable alternative to MC. As stock-raising farmers must make informed decisions about colostrum feeding management, this study was conducted to determine the effect of feeding MC versus CR on the promotion of immunological status, growth, and health in pre-weaned Japanese black (JB) calves. Sixteen newborn JB calves were fed MC after birth, and 16 JB calves were fed CR. For the MC group, the numbers of γδ T cells, CD4+ cells, CD8+ cells, CD4+CD8+ cells, B cells, and MHC class II+ cells were significantly higher compared with the CR group. Furthermore, the expression levels of interleukin (IL)-1β-, IL-2-, and interferon-γ (IFN-γ)-encoding mRNAs were significantly higher in the MC group compared with the CR group. A lower incidence of disease in 1-month-old calves and higher carcass weight in the MC group were observed compared with the CR group. These results suggest that CR activates the immune system delayed in calves compared with MC. MC increases populations of various immunocompetent cells, which can reduce infection rates and improve body weight gain.
Project description:Senecavirus A (SVA) is a causative agent for vesicular disease in swine, which is clinically indistinguishable from other vesicular diseases of swine including foot-and-mouth disease (FMD). Recently, it was reported that buffalo in Guangdong, China were experiencing clinical symptoms similar to FMD including mouth ulcers and lameness tested positive for SVA. The objective of this study was to determine the susceptibility of cattle (Bos taurus) to SVA infection. Initial in vitro work using the PrimeFlow assay demonstrated that bovine cell lines and peripheral blood mononuclear cells from cattle were susceptible to SVA infection. Subsequently, six colostrum-deprived Holstein calves were challenged with SVA intranasally. No vesicular lesions were observed after challenge. Serum, oral, nasal, and rectal swabs tested for SVA nucleic acid did not support significant viral replication and there was no evidence of seroconversion. Therefore, demonstrating cattle from this study were not susceptible to experimental SVA infection.
Project description:Newborn Holstein (n = 48) and Jersey (n = 30) calves were studied to compare absorption of immunoglobulin G (IgG) from maternal colostrum (n = 39) or colostrum replacement containing an Ig concentrate derived from bovine serum (n = 39). Calves were also fed milk replacer with (n = 38) or without (n = 40) animal plasma (20% of crude protein) to 29 d of age to determine effect of plasma protein on IgG status, health, and growth. Calves were fed maternal colostrum or colostrum replacement at 1.5 and 13.5 h of age and provided a total of 250 or 249 and 180 or 186 g of IgG for Holsteins and Jerseys fed maternal colostrum or colostrum replacement, respectively. Milk replacer (12.5% DM) was fed at 31% of metabolic birth weight (2 feedings/d). Plasma was sampled at 0 h, 24 h, and weekly to determine IgG by turbidimetric immunoassay. At blood collection, calves were weighed and measured to determine growth. Health scores, fecal scores, and grain intake were measured daily. Plasma IgG at 24 h did not differ between calves fed maternal colostrum (13.78 +/- 0.39 g/ L) and colostrum replacement (13.96 +/- 0.38 g/L). Average daily gain, withers height, hip height, body length, heart girth, health, and incidence of diarrhea were not different between treatment groups. Calves fed maternal colostrum used feed more efficiently than calves fed colostrum replacement. Plasma IgG and performance were not affected by the addition of animal plasma to milk replacer. The colostrum replacement used in this study provided adequate IgG for newborn calves. Animal plasma was an acceptable source of protein but did not enhance growth or immunity under the conditions of this study.
Project description:Our study would like to explore the different colostrum feeding time treatment, as well as the influence of host-microbial interaction on transcriptome profile and enriched functions of the two day old dairy calves.
Project description:BackgroundAlthough there are studies on colostrum and milk proteomics of different species in the literature, there is no published report about different quality bovine colostrums' proteomics.ObjectivesThe aim of this study was to compare the proteome content of high- and low-quality bovine colostrums for the first time.MethodsColostrum samples were collected from 32 Holstein cows from the same farm that had just calved. Brix% levels of colostrums were measured, and then, those with a Brix% value of ≥27% were classified as high-quality and those with a Brix% value of ˂22% as low-quality. Three samples from high-quality and low-quality colostrums were selected and proteomic analyses were performed by pooling separately.ResultsTotally 95 proteins were identified in the colostrums, and 19 of them showed significant changes between high- and low-quality colostrums. Expressions in colostrum of glycosylation-dependent cell adhesion molecule-1, cofilin-1, alpha-S2-casein, alpha-lactalbumin, alpha-1B-glycoprotein, actin_cytoplasmic-1, nucleobindin-1, cathelicidin-4, inter-alpha-trypsin inhibitor heavy chain H4, chitinase-3-like protein 1 and monocyte differentiation antigen CD14 were lower, whereas tetranectin, secreted frizzled-related protein-1 (SFRP1), perilipin-2, coatomer subunit epsilon (COPE), butyrophilin subfamily 1 member A1, polyubiquitin-B, lactadherin and albumin levels were higher in high-quality colostrum than low-quality colostrum. Moreover, SFRP1, COPE and cathelicidin-4 proteins were identified for the first time in bovine colostrum. In high-quality colostrum, the most prominently down-regulated proteins were cathelicidin-4 (26.01-fold) and cofilin-1 (17.42-fold), and the most prominently up-regulated proteins were COPE (3.37-fold) and tetranectin (3.07-fold).ConclusionsIt was detected that the proteome contents of high- and low-quality bovine colostrums were different from each other. As new functions are added to the protein databases regarding these proteins detected in colostrums, the interactions of proteins with each other and with other molecules will be detailed and the effects of high-quality colostrums on passive transfer immunity and calf health will be understood in full detail.
Project description:Serological evidence for influenza A, subtype H1 and H3 virus infections of bovines, associated with respiratory disease and decreased milk production, has been reported. Equine H3N8 influenza virus circulates widely and was responsible for the introduction of H3N8 influenza into canines.To explore the possibility that equine H3N8 influenza might also infect bovines.To assess the incidence of seroconversion in the field, a retrospective survey of bovine serum samples was carried out. Also, primary cultures of bovine nasal turbinate cells, and live beef calves, were studied for their permissiveness to infection.We found serological evidence of exposure of bovines in Kentucky to H3 influenza. We demonstrate that cultured bovine respiratory epithelium is permissive for the growth of equine H3N8 influenza virus in vitro, but this virus does not replicate extensively or produce disease in experimentally inoculated cattle.
Project description:Bovine Viral Diarrhea Virus (BVDV) is an important pathogen that plays a significant role in initiating Bovine Respiratory Disease Complex (BRDC) in cattle. The disease causes multi-billion dollar losses globally due to high calf mortality and increased morbidity leading to heavy use of antibiotics. Current commercial vaccines provide limited cross-protection with several drawbacks such as safety, immunosuppression, potential reversion to virulence, and induction of neonatal pancytopenia. This study evaluates two prototype vaccines containing multiple rationally designed recombinant mosaic BVDV antigens for their potential to confer cross-protection against diverse BVDV strains. Genes encoding three novel mosaic antigens, designated E2123, NS2-31, and NS2-32, were designed in silico and expressed in mammalian cells for the formulation of a prototype protein-based vaccine. The mosaic antigens contain highly conserved protective epitopes from BVDV-1a, -1b, and -2, and included unique neutralizing epitopes from disparate strains to broaden coverage. We tested immunogenicity and protective efficacy of Expi293TM-expressed mosaic antigens (293F-E2123, 293F-NS2-31, and 293F-NS2-32), and baculovirus-expressed E2123 (Bac-E2123) mosaic antigen in calves. The Expi293TM-expressed antigen cocktail induced robust BVDV-specific cross-reactive IFN-γ responses, broadly neutralizing antibodies, and following challenge with a BVDV-1b strain, the calves had significantly (p < 0.05) reduced viremia and clinical BVD disease compared to the calves vaccinated with a commercial killed vaccine. The Bac-E2123 antigen was not as effective as the Expi293TM-expressed antigen cocktail, but it protected calves from BVD disease better than the commercial killed vaccine. The findings support feasibility for development of a broadly protective subunit BVDV vaccine for safe and effective management of BRD.
Project description:The growth and health statuses of calves during the early stages of development have a significant effect on milk production during their first lactation period. Using appropriate milk replacers helps meet the long-term targets of dairy farmers. This study aimed to examine the effects of milk, milk replacer, and milk replacer plus ethoxyquin on growth performance, antioxidant status, immune function, and the gut microbiota of Holstein dairy calves. A total of 36 neonatal dairy calves were randomly divided into three groups and fed different diets: one group was fed milk, another group was fed milk replacer, and the third group was given milk replacer plus ethoxyquin. The supplementation with ethoxyquin was started on day 35 of the feeding period. The calves were weaned on day 45, and the experiment was conducted until day 49. The blood and fecal samples were collected at the end of the animal experiment. The results showed that milk replacers induced poor growth performance (body weight and average daily gain). However, milk replacer plus ethoxyquin aided in growth performance, enhanced the starter intake and blood antioxidative ability, and elevated the concentration of fecal valeric acid. Moreover, fecal fermentation and 16S rRNA analyses showed that milk replacer plus ethoxyquin altered the microbial composition (reducing Alistipes and Ruminococcaceae and increasing Bacteroides and Alloprevotella). Pearson's correlation assays showed that alterations in fecal microbiota strongly correlated with average daily gain and antioxidative ability. The results indicated the potential of milk replacer plus ethoxyquin in modulating the growth of dairy calves and in enhancing their ability to combat stress.
Project description:Calf diarrhea is a leading cause of death in preweaning calves and it causes major economic losses to producers. Acidified milk has been shown to have beneficial effects on health and growth parameters in calves but there is little research into its effects on the microbiota, and few studies on the use of acidified colostrum. The purpose of this study was to compare how feeding acidified colostrum to calves at birth affects fecal microbiota from birth through 8 wk of age compared with calves fed nonacidified colostrum. In this study, 5 calves received acidified colostrum (treated group) and 5 calves received nonacidified colostrum (control group) at birth and at 12 h of age. All calves were subsequently fed acidified whole milk until weaning at 8 wk of age and had access to starter grain starting at d 3 and throughout the study. Fecal samples were collected at 24 h, 48 h, and at 1, 2, 3, 4, 5, 6, 7, and 8 wk of age. Samples were extracted for genomic DNA, PCR-amplified for the V1-V2 region of the 16S rRNA bacteria gene, sequenced, and analyzed using QIIME2. Bacterial richness (estimated by number of observed species) and bacterial diversity (estimated by Shannon diversity index) differed between time points but not between treatment groups, and both increased over time. Weighted and unweighted UniFrac analysis showed differences between bacterial communities across time points and treatments. Across all time points (lmer test), 6 bacterial genera were different between treatments: Faecalibacterium and unclassified Clostridiaceae were more abundant, whereas Atopobium, Collinsella, CF231, and unclassified Veillonellaceae were less abundant in treated versus control calves. Faecalibacterium is a butyrate-producing bacterium that has been linked to decreased prevalence of diarrhea in calves. Our results indicate that there is considerable flux in the calf microbiome through the neonatal period and weaning transition but that feeding acidified colostrum followed by acidified whole milk allowed early colonization of Faecalibacterium. Further studies are needed to verify the positive benefits of promoting Faecalibacterium on improving the health of preweaning calves.
Project description:IntroductionCalves are highly susceptible to gastrointestinal infection with Cryptosporidium parvum (C. parvum), which can result in watery diarrhea and eventually death or impaired development. With little to no effective therapeutics, understanding the host's microbiota and pathogen interaction at the mucosal immune system has been critical to identify and test novel control strategies.MethodsHerein, we used an experimental model of C. parvum challenge in neonatal calves to describe the clinical signs and histological and proteomic profiling of the mucosal innate immunity and microbiota shifts by metagenomics in the ileum and colon during cryptosporidiosis. Also, we investigated the impact of supplemental colostrum feeding on C. parvum infection.ResultsWe showed that C. parvum challenged calves experienced clinical signs including pyrexia and diarrhea 5 days post challenge. These calves showed ulcerative neutrophil ileitis with a proteomic signature driven by inflammatory effectors, including reactive oxygen species and myeloperoxidases. Colitis was also noticed with an aggravated mucin barrier depletion and incompletely filled goblet cells. The C. parvum challenged calves also displayed a pronounced dysbiosis with a high prevalence of Clostridium species (spp.) and number of exotoxins, adherence factors, and secretion systems related to Clostridium spp. and other enteropathogens, including Campylobacter spp., Escherichia sp., Shigella spp., and Listeria spp. Daily supplementation with a high-quality bovine colostrum product mitigated some of the clinical signs and modulated the gut immune response and concomitant microbiota to a pattern more similar to that of healthy unchallenged calves.DiscussionC. parvum infection in neonatal calves provoked severe diarrheic neutrophilic enterocolitis, perhaps augmented due to the lack of fully developed innate gut defenses. Colostrum supplementation showed limited effect mitigating diarrhea but demonstrated some clinical alleviation and specific modulatory influence on host gut immune responses and concomitant microbiota.