Unknown

Dataset Information

0

Characterization and DNA-binding specificities of Ralstonia TAL-like effectors.


ABSTRACT: Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp.

SUBMITTER: Li L 

PROVIDER: S-EPMC3716395 | biostudies-literature | 2013 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications


Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a u  ...[more]

Similar Datasets

| S-EPMC3711819 | biostudies-literature
| S-EPMC3017587 | biostudies-literature
| S-EPMC3794935 | biostudies-literature
| S-EPMC3586824 | biostudies-literature
| S-EPMC3840011 | biostudies-literature
| S-EPMC4542534 | biostudies-literature
| S-EPMC3572262 | biostudies-literature
| S-EPMC3424557 | biostudies-literature
| S-EPMC3098256 | biostudies-literature
| S-EPMC3815405 | biostudies-literature