Atomic structures of silicene layers grown on Ag(111): scanning tunneling microscopy and noncontact atomic force microscopy observations.
Ontology highlight
ABSTRACT: Silicene, the considered equivalent of graphene for silicon, has been recently synthesized on Ag(111) surfaces. Following the tremendous success of graphene, silicene might further widen the horizon of two-dimensional materials with new allotropes artificially created. Due to stronger spin-orbit coupling, lower group symmetry and different chemistry compared to graphene, silicene presents many new interesting features. Here, we focus on very important aspects of silicene layers on Ag(111): First, we present scanning tunneling microscopy (STM) and non-contact Atomic Force Microscopy (nc-AFM) observations of the major structures of single layer and bi-layer silicene in epitaxy with Ag(111). For the (3 × 3) reconstructed first silicene layer nc-AFM represents the same lateral arrangement of silicene atoms as STM and therefore provides a timely experimental confirmation of the current picture of the atomic silicene structure. Furthermore, both nc-AFM and STM give a unifying interpretation of the second layer (?3 × ?3)R ± 30° structure. Finally, we give support to the conjectured possible existence of less stable, ~2% stressed, (?7 × ?7)R ± 19.1° rotated silicene domains in the first layer.
SUBMITTER: Resta A
PROVIDER: S-EPMC3739010 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
ACCESS DATA