Project description:The Asian musk shrew (shrew) is a new reservoir of a rat hepatitis E virus (HEV) that has been classified into genotype HEV-C1 in the species Orthohepevirus C. However, there is no information regarding classification of the new rat HEV based on the entire genome sequences, and it remains unclear whether rat HEV transmits from shrews to humans. We herein inoculated nude rats (Long-Evans rnu/rnu) with a serum sample from a shrew trapped in China, which was positive for rat HEV RNA, to isolate and characterize the rat HEV distributed in shrews. A rat HEV strain, S1129, was recovered from feces of the infected nude rat, indicating that rat HEV was capable of replicating in rats. S1129 adapted and grew well in PLC/PRF/5 cells, and the recovered virus (S1129c1) infected Wistar rats. The entire genomes of S1129 and S1129c1 contain four open reading frames and share 78.3-81.8% of the nucleotide sequence identities with known rat HEV isolates, demonstrating that rat HEVs are genetically diverse. We proposed that genotype HEV-C1 be further classified into subtypes HEV-C1a to HEV-C1d and that the S1129 strain circulating in the shrew belonged to the new subtype HEV-C1d. Further studies should focus on whether the S1129 strain infects humans.
Project description:The present study established techniques to induce pseudopregnancy, in vitro oocyte cultures from pronuclear to 2- to 4-cell stages, and embryo transfer in musk shrews, a reflex ovulator. Offspring were subsequently obtained by transferring in vivo-developed or in vitro-cultured embryos. Female musk shrews received human chronic gonadotropin (hCG), with or without mating stimuli, from vasectomized males to produce pseudopregnant recipients. Embryos at the 2- to 4-cell stage were collected 44-48 h after mating. Another set of embryos was collected 26-27 h after mating and then cultured for 20 h from the pronuclear to 2- to 4-cell stages. Subsequently, embryos were transferred into the oviducts of pseudopregnant recipients 24 or 48 h after the induction of pseudopregnancy. Offsprings were successfully obtained from recipients that received hCG 24 h before embryo transfer, regardless of mating stimuli. These techniques may be valuable for producing transgenic musk shrews.
Project description:Identifying key reservoirs for zoonoses is crucial for understanding variation in incidence. Plague re-emerged in Mahajanga, Madagascar in the 1990s but there has been no confirmed case since 1999. Here we combine ecological and genetic data, from during and after the epidemics, with experimental infections to examine the role of the shrew Suncus murinus in the plague epidemiological cycle. The predominance of S. murinus captures during the epidemics, their carriage of the flea vector and their infection with Yersinia pestis suggest they played an important role in the maintenance and transmission of plague. S. murinus exhibit a high but variable resistance to experimental Y. pestis infections, providing evidence of its ability to act as a maintenance host. Genetic analyses of the strains isolated from various hosts were consistent with two partially-linked transmission cycles, with plague persisting within the S. murinus population, occasionally spilling over into the rat and human populations. The recent isolation from a rat in Mahajanga of a Y. pestis strain genetically close to shrew strains obtained during the epidemics reinforces this hypothesis and suggests circulation of plague continues. The observed decline in S. murinus and Xenopsylla cheopis since the epidemics appears to have decreased the frequency of spillover events to the more susceptible rats, which act as a source of infection for humans. Although this may explain the lack of confirmed human cases in recent years, the current circulation of plague within the city highlights the continuing health threat.
Project description:The present study investigated whether kisspeptin-G protein-coupled receptor 54 (GPR54) signaling plays a role in mediating mating-induced ovulation in the musk shrew (Suncus murinus), a reflex ovulator. For this purpose, we cloned suncus Kiss1 and Gpr54 cDNA from the hypothalamus and found that suncus kisspeptin (sKp) consists of 29 amino acid residues (sKp-29). Injection of exogenous sKp-29 mimicked the mating stimulus to induce follicular maturation and ovulation. Administration of several kisspeptins and GPR54 agonists also induced presumed ovulation in a dose-dependent manner, and Gpr54 mRNA was distributed in the hypothalamus, showing that kisspeptins induce ovulation through binding to GPR54. The sKp-29-induced ovulation was blocked completely by pretreatment with a gonadotropin-releasing hormone (GnRH) antagonist, suggesting that kisspeptin activates GnRH neurons to induce ovulation in the musk shrew. In addition, in situ hybridization revealed that Kiss1-expressing cells are located in the medial preoptic area (POA) and arcuate nucleus in the musk shrew hypothalamus. The number of Kiss1-expressing cells in the POA or arcuate nucleus was up-regulated or down-regulated by estradiol, suggesting that kisspeptin neurons in these regions were the targets of the estrogen feedback action. Finally, mating stimulus largely induced c-Fos expression in Kiss1-positive cells in the POA, indicating that the mating stimulus activates POA kisspeptin neurons to induce ovulation. Taken together, these results indicate that kisspeptin-GPR54 signaling plays a role in the induction of ovulation in the musk shrew, a reflex ovulator, as it does in spontaneous ovulators.
Project description:Many studies indicated that small mammals are important reservoirs for Bartonella species. Using molecular methods, several studies have documented that bats could harbor Bartonella. This study was conducted to investigate the relationship of Bartonella spp. identified in bats and small mammals living in the same ecological environment. During May 2009 and March 2010, a total of 102 blood specimens were collected. By whole blood culture and molecular identification, a total of 6 bats, 1 rodent and 9 shrews were shown to be infected by Bartonella species. After sequencing and phylogenetic analyses of the sequences of gltA, ftsZ, rpoB and ribC genes, these specific isolates from bats were not similar to the known Bartonella species (the similarity values were less than 91.2%, 90.5%, 88.8%, and 82.2%, respectively); these isolates formed an independent clade away from other known Bartonella type strains. The Bartonella spp. isolated from small mammals, which were closely related to Bartonella tribocorum, Bartonella elizabethae, Bartonella grahamii, Bartonella rattimassiliensis and Bartonella queenslandensis, were similar to the findings in previous studies worldwide. Therefore, the results implied that the species of Bartonella strains isolated from small mammals were different from those identified in bats. Our results strongly suggested that the bat isolate could be a new Bartonella species. This study is also the first one to isolate Bartonella organisms from Asian gray shrews, Crocidura attenuata tanakae.
Project description:Gastrin-releasing peptide (GRP) has recently been identified as an itch-signaling molecule in the primary afferents and spinal cord of rodents. However, little information exists on the expression and localization of GRP in the trigeminal somatosensory system other than in rats. We examined the generality of the trigeminal GRP system in mammals using two distinct species, suncus as a model of specialized placental mammals known to have a well-developed trigeminal sensory system and mice as a representative small laboratory animal. We first analyzed the gross morphology of the trigeminal somatosensory system in suncus to provide a brainstem atlas on which to map GRP distribution. Immunohistochemical analyses showed that 8% of trigeminal ganglion neurons in suncus and 6% in mice expressed GRP. Expression was restricted to cells with smaller somata. The GRP-containing fibers were densely distributed in the superficial layers of the caudal part of the trigeminal spinal nucleus (Vc) but rare in the rostral parts, both in suncus and mice. Expression of GRP receptor mRNA and protein was also detected in the Vc of suncus. Taken together, these results suggest that the trigeminal GRP system mediating itch sensation is conserved in mammals.
Project description:Objective:House musk shrew (Suncus murinus), a small experimental animal with low body fat, may be a possible model for human lipodystrophy. Leptin is an adipocyte-derived hormone thought to have an important role in the pathophysiology of lipodystrophy. The objectives of this study were to clarify the structure and distribution of suncus leptin. Materials and methods:To determine the primary structure of suncus leptin, we cloned the suncus Lep cDNA using the rapid amplification of cDNA ends method. The obtained amino acid (aa) sequence was compared with other mammals and the protein structure prediction was performed. Results:The suncus Lep cDNA encodes 170 aa. The putative suncus leptin precursor has a predicted signal peptide of 21 aa, and the mature leptin comprises 149 aa. The mature leptin is 75%-82% homologous to that of other species. Insertion of the three aa, VPQ, not seen in other mammals was found. This VPQ insertion is thought to be due to a nucleotide insertion of nine bases by slippage-like microindels. The predicted 3D structure of suncus leptin exhibited a typical four a-helix structure, however, the VPQ region protruded compared with human leptin. Lep mRNA expression was observed only in white and brown adipose tissues. Conclusion:This study revealed the structure and distribution of suncus leptin. Because the addition of VPQ, which is not found in other mammals, was observed, suncus leptin attracts attention to its physiological action, and to the possibility of being a model of human lipodystrophy.
Project description:Expression and localization of members of the aquaporin (AQP) family (AQP1, 2, 3, 4, and 5) in the kidney of the musk shrew (Suncus murinus) was examined by immunohistochemistry. AQP1 was expressed in the proximal tubules and in the thin limb of the loops of Henle. AQP1 was the only water channel expressed in the proximal nephron examined, indicating that AQP1 may be an independent water transporter in the proximal nephron. AQP2 and AQP5 were localized to the apical cytoplasm of the cortical to medullary collecting duct (CD) cells and AQP3 and AQP4 were localized to the basal aspect of the cortical to medullary CD cells. AQP3 expression was weaker in the cortical cells compared with the medullary cells, whereas AQP4 was strongly positive throughout the CD. These indicate that the CD is the main water reabsorption segment of the nephron and is regulated by AQPs. Indeed, apical water transport of CD cells of the musk shrew may be controlled by both AQP2 and AQP5. The characteristic expression pattern of the AQPs in this animal provides a novel animal model for elucidating the regulation of water reabsorption by AQPs in the mammalian kidney.
Project description:Gastric electrical stimulation (GES) is implicated as a potential therapy for difficult-to-treat nausea and vomiting; however, there is a lack of insight into the mechanisms responsible for these effects. This study tested the relationship between acute GES and emesis in musk shrews, an established emetic model system.Urethane-anesthetized shrews were used to record emetic responses (monitoring intra-tracheal pressure and esophageal contractions), respiration rate, heart rate variability, blood pressure, and gastrointestinal electromyograms. We investigated the effects of acute GES pulse duration (0.3, 1, 5, and 10 ms), current amplitude (0.5, 1, and 2 mA), pulse frequency (8, 15, 30, and 60 Hz), and electrode placement (antrum, body, and fundus) on emesis induced by gastric stretch, using a balloon.There were four outcomes: (i) GES did not modify the effects of gastric stretch-induced emesis; (ii) GES produced emesis, depending on the stimulation parameters, but was less effective than gastric stretch; (iii) other physiological changes were closely associated with emesis and could be related to a sub-threshold activation of the emetic system, including suppression of breathing and rise in blood pressure; and (iv) a control experiment showed that 8-OH-DPAT, a reported 5-HT1A receptor agonist that acts centrally as an antiemetic, blocked gastric stretch-induced emesis.These results do not support an antiemetic effect of acute GES on gastric distension-induced emesis within the range of conditions tested, but further evaluation should focus on a broader range of emetic stimuli and GES stimulation parameters.
Project description:Although shrews are one of the largest groups of mammals, little is known about their role in the evolution and transmission of viral pathogens, including coronaviruses (CoVs). We captured 266 Asian house shrews (Suncus murinus) in Jiangxi and Zhejiang Provinces, China, during 2013 to 2015. CoV RNA was detected in 24 Asian house shrews, with an overall prevalence of 9.02%. Complete viral genome sequences were successfully recovered from the RNA-positive samples. The newly discovered shrew CoV fell into four lineages reflecting their geographic origins, indicative of largely allopatric evolution. Notably, these viruses were most closely related to alphacoronaviruses but sufficiently divergent that they should be considered a novel member of the genus Alphacoronavirus, which we denote Wénchéng shrew virus (WESV). Phylogenetic analysis revealed that WESV was a highly divergent member of the alphacoronaviruses and, more dramatically, that the S gene of WESV fell in a cluster that was genetically distinct from that of known coronaviruses. The divergent position of WESV suggests that coronaviruses have a long association with Asian house shrews. In addition, the genome of WESV contains a distinct NS7 gene that exhibits no sequence similarity to genes of any known viruses. Together, these data suggest that shrews are natural reservoirs for coronaviruses and may have played an important and long-term role in CoV evolution.IMPORTANCE The subfamily Coronavirinae contains several notorious human and animal pathogens, including severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and porcine epidemic diarrhea virus. Because of their genetic diversity and phylogenetic relationships, it has been proposed that the alphacoronaviruses likely have their ultimate ancestry in the viruses residing in bats. Here, we describe a novel alphacoronavirus (Wénchéng shrew virus [WESV]) that was sampled from Asian house shrews in China. Notably, WESV is a highly divergent member of the alphacoronaviruses and possesses an S gene that is genetically distinct from those of all known coronaviruses. In addition, the genome of WESV contains a distinct NS7 gene that exhibits no sequence similarity to those of any known viruses. Together, these data suggest that shrews are important and longstanding hosts for coronaviruses that merit additional research and surveillance.