Translocator protein (Tspo) gene promoter-driven green fluorescent protein synthesis in transgenic mice: an in vivo model to study Tspo transcription.
Ontology highlight
ABSTRACT: Translocator protein (TSPO), previously known as the peripheral-type benzodiazepine receptor, is a ubiquitous drug- and cholesterol-binding protein primarily found in the outer mitochondrial membrane as part of a mitochondrial cholesterol transport complex. TSPO is present at higher levels in steroid-synthesizing and rapidly proliferating tissues and its biological role has been mainly linked to mitochondrial function, steroidogenesis and cell proliferation/apoptosis. Aberrant TSPO levels have been linked to multiple diseases, including cancer, endocrine disorders, brain injury, neurodegeneration, ischemia-reperfusion injury and inflammatory diseases. Investigation of the functions of this protein in vitro and in vivo have been mainly carried out using high-affinity drug ligands, such as isoquinoline carboxamides and benzodiazepines and more recently, gene silencing methods. To establish a model to study the regulation of Tspo transcription in vivo, we generated a transgenic mouse model expressing green fluorescent protein (GFP) from Aequorea coerulescens under control of the Tspo promoter region (Tspo-AcGFP). The expression profiles of Tspo-AcGFP, endogenous TSPO and Tspo mRNA were found to be well-correlated. Tspo-AcGFP synthesis in the transgenic mice was seen in almost every tissue examined and as with TSPO in wild-type mice, Tspo-AcGFP was highly expressed in steroidogenic cells of the endocrine and reproductive systems, epithelial cells of the digestive system, skeletal muscle and other organs. In summary, this transgenic Tspo-AcGFP mouse model recapitulates endogenous Tspo expression patterns and could be a useful, tractable tool for monitoring the transcriptional regulation and function of Tspo in live animal experiments.
SUBMITTER: Wang HJ
PROVIDER: S-EPMC3740157 | biostudies-literature | 2012 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA