Unknown

Dataset Information

0

Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump.


ABSTRACT: The small size (58 residues) and simple structure of the B domain of staphylococcal protein A (BdpA) have led to this domain being a paradigm for theoretical studies of folding. Experimental studies of the folding of BdpA have been limited by the rapidity of its folding kinetics. We report the folding kinetics of a fluorescent mutant of BdpA (G29A F13W), named F13W*, using nanosecond laser-induced temperature jump experiments. Automation of the apparatus has permitted large data sets to be acquired that provide excellent signal-to-noise ratio over a wide range of experimental conditions. By measuring the temperature and denaturant dependence of equilibrium and kinetic data for F13W*, we show that thermodynamic modeling of multidimensional equilibrium and kinetic surfaces is a robust method that allows reliable extrapolation of rate constants to regions of the folding landscape not directly accessible experimentally. The results reveal that F13W* is the fastest-folding protein of its size studied to date, with a maximum folding rate constant at 0 M guanidinium chloride and 45 degrees C of 249,000 s(-1). Assuming the single-exponential kinetics represent barrier-limited folding, these data limit the value for the preexponential factor for folding of this protein to at least approximately 2 x 10(6) s(-1).

SUBMITTER: Dimitriadis G 

PROVIDER: S-EPMC374326 | biostudies-literature | 2004 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump.

Dimitriadis George G   Drysdale Adam A   Myers Jeffrey K JK   Arora Pooja P   Radford Sheena E SE   Oas Terence G TG   Smith D Alastair DA  

Proceedings of the National Academy of Sciences of the United States of America 20040308 11


The small size (58 residues) and simple structure of the B domain of staphylococcal protein A (BdpA) have led to this domain being a paradigm for theoretical studies of folding. Experimental studies of the folding of BdpA have been limited by the rapidity of its folding kinetics. We report the folding kinetics of a fluorescent mutant of BdpA (G29A F13W), named F13W*, using nanosecond laser-induced temperature jump experiments. Automation of the apparatus has permitted large data sets to be acqui  ...[more]

Similar Datasets

| S-EPMC384698 | biostudies-literature
| S-EPMC4970856 | biostudies-literature
| S-EPMC2367204 | biostudies-literature
| S-EPMC5802873 | biostudies-literature
| S-EPMC4794261 | biostudies-literature
| S-EPMC3319365 | biostudies-literature
| S-EPMC6987177 | biostudies-literature
| S-EPMC2667024 | biostudies-literature
| S-EPMC3581973 | biostudies-literature
| S-EPMC6516828 | biostudies-literature