Unknown

Dataset Information

0

Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism.


ABSTRACT: In Corynebacterium glutamicum formation of glc-1-P (?-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by ?-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways.

SUBMITTER: Seibold GM 

PROVIDER: S-EPMC3755335 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism.

Seibold Gerd M GM   Eikmanns Bernhard J BJ  

Bioscience reports 20130823 4


In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contribu  ...[more]

Similar Datasets

| S-EPMC2953031 | biostudies-literature
| S-EPMC4345391 | biostudies-literature
| S-EPMC196791 | biostudies-other
| S-EPMC3294798 | biostudies-other
| S-EPMC92100 | biostudies-literature
| S-EPMC201675 | biostudies-other
| S-EPMC7193084 | biostudies-literature
| S-EPMC127577 | biostudies-literature
| S-EPMC444832 | biostudies-literature
2020-03-24 | GSE138829 | GEO