Project description:Although it has long been proposed that genetic factors contribute to adaptation to high altitude, such factors remain largely unverified. Recent advances in high-throughput sequencing have made it feasible to analyze genome-wide patterns of genetic variation in human populations. Since traditionally such studies surveyed only a small fraction of the genome, interpretation of the results was limited.We report here the results of the first whole genome resequencing-based analysis identifying genes that likely modulate high altitude adaptation in native Ethiopians residing at 3,500 m above sea level on Bale Plateau or Chennek field in Ethiopia. Using cross-population tests of selection, we identify regions with a significant loss of diversity, indicative of a selective sweep. We focus on a 208 kbp gene-rich region on chromosome 19, which is significant in both of the Ethiopian subpopulations sampled. This region contains eight protein-coding genes and spans 135 SNPs. To elucidate its potential role in hypoxia tolerance, we experimentally tested whether individual genes from the region affect hypoxia tolerance in Drosophila. Three genes significantly impact survival rates in low oxygen: cic, an ortholog of human CIC, Hsl, an ortholog of human LIPE, and Paf-AH?, an ortholog of human PAFAH1B3.Our study reveals evolutionarily conserved genes that modulate hypoxia tolerance. In addition, we show that many of our results would likely be unattainable using data from exome sequencing or microarray studies. This highlights the importance of whole genome sequencing for investigating adaptation by natural selection.
Project description:Voriconazole is an antifungal agent that is currently used as primary therapy for invasive aspergillosis and as a potential treatment for systemic candidiasis. Data on the dosing of voriconazole in obese patients are not available, which is problematic given the increased prevalence of this special population. To address this limitation, we evaluated the steady-state plasma pharmacokinetics of voriconazole through a two-way, crossover design in a cohort of eight healthy volunteers with class II obesity or greater. The median (minimum, maximum) age, weight, and body mass index of obese subjects were 43 (22, 48) years, 133 (105, 155) kg, and 46.2 (38.4, 53.7) kg/m², respectively. The geometric mean ratios (90% confidence intervals) for the area under the curve from time zero to 12 h (dosing interval; AUC(0-τ)), maximum concentration (C(max)), minimum concentration at 12 h (C(min)), and time to C(max) (T(max)) of the 300-mg to 200-mg dosing regimens were 2.0 (1.5, 2.7), 1.8 (1.4, 2.2), 2.2 (1.6, 2.9), and 1.6 (1.0, 2.4) in obese subjects, respectively. The AUC(0-τ) values observed in obese subjects were comparable to those from a historical data set of nonobese subjects. Voriconazole dose-normalized AUC(0-τ) values had a modestly better correlation with lean body weight (r² = 0.42) than total body weight (r² = 0.14). An excellent linear relationship (r² = 0.96) was identified between C(min) values and AUC(0-τ) values. Adjustment of voriconazole doses in individuals with class II obesity or greater does not appear to be necessary on the basis of body weight.
Project description:Dendritic cells (DCs) are innate immune cells with a central role in immunity and tolerance. Under steady-state, DCs are scattered in tissues as resting cells. Upon infection or injury, DCs get activated and acquire the full capacity to prime antigen-specific CD4+ and CD8+ T cells, thus bridging innate and adaptive immunity. By secreting different sets of cytokines and chemokines, DCs orchestrate diverse types of immune responses, from a classical proinflammatory to an alternative pro-repair one. DCs are highly heterogeneous, and physiological differences in tissue microenvironments greatly contribute to variations in DC phenotype. Oxygen tension is normally low in some lymphoid areas, including bone marrow (BM) hematopoietic niches; nevertheless, the possible impact of tissue hypoxia on DC physiology has been poorly investigated. We assessed whether DCs are hypoxic in BM and spleen, by staining for hypoxia-inducible-factor-1α subunit (HIF-1α), the master regulator of hypoxia-induced response, and pimonidazole (PIM), a hypoxic marker, and by flow cytometric analysis. Indeed, we observed that mouse DCs have a hypoxic phenotype in spleen and BM, and showed some remarkable differences between DC subsets. Notably, DCs expressing membrane c-kit, the receptor for stem cell factor (SCF), had a higher PIM median fluorescence intensity (MFI) than c-kit- DCs, both in the spleen and in the BM. To determine whether SCF (a.k.a. kit ligand) has a role in DC hypoxia, we evaluated molecular pathways activated by SCF in c-kit+ BM-derived DCs cultured in hypoxic conditions. Gene expression microarrays and gene set enrichment analysis supported the hypothesis that SCF had an impact on hypoxia response and inhibited autophagy-related gene sets. Our results suggest that hypoxic response and autophagy, and their modulation by SCF, can play a role in DC homeostasis at the steady state, in agreement with our previous findings on SCF's role in DC survival.
Project description:BACKGROUND:The contribution of hepcidin as a regulator of iron metabolism & erythropoiesis on the severity of anemia in sickle cell disease (SCD) remains poorly characterized, especially in Sub-Saharan African populations. The aims of the study were to determine if hepcidin is associated with severity of steady-state anemia in SCD and to investigate factors associated with hepcidin and anemia in SCD. METHODS:Archived samples from 199 Tanzanian children, 56% boys aged 3-18 with laboratory-confirmed SCD were analysed based on recorded averaged steady-state hemoglobin (ASSH) quartiles (lowest vs. highest). Univariable and multivariable logistic regression was used to assess associations with ASSH quartiles. FINDINGS:In univariable analysis, hepcidin <5·5?ng/mL was associated with increased odds of being in the lowest ASSH quartile (OR 2·20; 95%CI 1·2-3·93) but which was limited to girls (OR 4·85, 95%CI 1·79-13·09, p?=?.046 for interaction). In multivariable analyses including either reticulocyte percentage or erythropoietin, lower hepcidin remained significantly associated with lowest ASSH quartile, although the hepcidin-sex interaction no longer reached statistical significance. No associations with ASSH quartile were observed for markers of inflammation, hemolysis or potential iron markers except for microcytosis, associated with higher ASSH, but which was confounded by reticulocyte percentage and alpha-thalassaemia status. INTERPRETATION:Hepcidin is lower in more severely anaemic children with SCD independent of inflammation or markers of erythropoiesis. FUNDING:Funding sources include The Wellcome Trust (080025, 095009, 094780 & 070114), MRC-UK (MC-A760-5QX00), NIHR Oxford Biomedical Research Centre, and the Bill and Melinda Gates Foundation ("Hepcidin and Iron in Global Health", OPP1055865).
Project description:<p>Although it has long been proposed that genetic factors contribute to adaptation to high altitude, such factors remain largely unverified. Recent advances in high-throughput sequencing have made it feasible to analyze genome-wide patterns of genetic variation in human populations. Since traditionally such studies surveyed only a small fraction of the genome (either exons or a subset of SNPs) or a group of candidate genes, interpretation of the results was limited.</p> <p>We focused our study on Ethiopian highlander populations, which have been found to be well adapted to high altitudes (~3500m). We sequenced and analyze the genomes of 13 high altitude native Ethiopians: 6 individuals of Oromo heritage living on Bale Plateau (labeled "Oromos"), and 7 individuals residing on the Chennek field in the Simien Mountains (labeled "Amhara").</p> <p>Our study revealed evolutionarily conserved genes that modulate hypoxia tolerance.</p>
Project description:The steady-state kinetics of the butyrylcholinesterase-catalysed hydrolysis of butyrylthiocholine and thiophenyl acetate were shown to deviate from Michaelis-Menten kinetics. The ;best' empirical rate law was selected by fitting different rate equations to the experimental data by non-linear regression methods. The results were analysed in view of two alternative interpretations: (1) the reaction is catalysed by a mixture of enzymes, or (2) the activity is due to a single enzyme displaying deviations from Michaelis-Menten kinetics. It was concluded that the second alternative applies, and this conclusion was further supported by experiments involving simultaneous hydrolysis of alternative thiol ester substrates (butyrylthiocholine/thiophenyl acetate) as well as alternative thiol ester and oxygen ester substrates (butyrylthiocholine/phenyl acetate; thiophenyl acetate/butyrylcholine; acetylthiocholine/phenyl acetate). On the basis of the conclusion that a single enzyme is responsible for the activity, a molecular model is proposed. This model involves an acylated enzyme, and implies binding to the enzyme of one acyl group and one ester molecule, but not two ester molecules at the same time. Thus butyrylcholinesterase, which is structurally a tetramer, behaves functionally as a co-operative dimer, an interpretation in accordance with available data from active-site titrations.
Project description:This study investigated how high-altitude (HA, 4300 m) acclimatization affected exogenous glucose oxidation during aerobic exercise. Sea-level (SL) residents (n = 14 men) performed 80-min, metabolically matched exercise ( V˙ O2 ∼ 1.7 L/min) at SL and at HA < 5 h after arrival (acute HA, AHA) and following 22-d of HA acclimatization (chronic HA, CHA). During HA acclimatization, participants sustained a controlled negative energy balance (-40%) to simulate the "real world" conditions that lowlanders typically experience during HA sojourns. During exercise, participants consumed carbohydrate (CHO, n = 8, 65.25 g fructose + 79.75 g glucose, 1.8 g carbohydrate/min) or placebo (PLA, n = 6). Total carbohydrate oxidation was determined by indirect calorimetry and exogenous glucose oxidation by tracer technique with 13C. Participants lost (P ≤ 0.05, mean ± SD) 7.9 ± 1.9 kg body mass during the HA acclimatization and energy deficit period. In CHO, total exogenous glucose oxidized during the final 40 min of exercise was lower (P < 0.01) at AHA (7.4 ± 3.7 g) than SL (15.3 ± 2.2 g) and CHA (12.4 ± 2.3 g), but there were no differences between SL and CHA. Blood glucose and insulin increased (P ≤ 0.05) during the first 20 min of exercise in CHO, but not PLA. In CHO, glucose declined to pre-exercise concentrations as exercise continued at SL, but remained elevated (P ≤ 0.05) throughout exercise at AHA and CHA. Insulin increased during exercise in CHO, but the increase was greater (P ≤ 0.05) at AHA than at SL and CHA, which did not differ. Thus, while acute hypoxia suppressed exogenous glucose oxidation during steady-state aerobic exercise, that hypoxic suppression is alleviated following altitude acclimatization and concomitant negative energy balance.
Project description:Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-d-myo-inosityl-2-(N-acetyl-l-cysteinyl)amido-2-deoxy-alpha-d-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-MshD. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady-state and pre-steady-state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady-state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady-state kinetic parameters were determined to be kcat equal to 3.15 s-1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analogue, 5'-O-[N-(l-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and noncompetitive inhibition versus cysteine, with an inhibition constant of approximately 306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid-quench techniques, giving rates of approximately 9.4 and approximately 5.2 s-1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC.
Project description:Cells were grown to early log phase (OD600 ~ 0.2) at 30oC in 1 liter of minimal B medium (Cherest, H., and Surdin-Kerjan, Y. (1992) Genetics 130, 51-58) with or without supplementation with 10 mM glycine and harvested. All cells were harvested by rapid centrifugation at room temperature then flash frozen in liquid nitrogen. Arrays compared expression of Gly- cells to the Gly+ controls. Strain BY4741 was the wild type and several deletion strains were also used. Keywords: parallel sample