Unknown

Dataset Information

0

Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity.


ABSTRACT: Aberrant lipid metabolism is an established hallmark of cancer cells. In particular, ether lipid levels have been shown to be elevated in tumors, but their specific function in cancer remains elusive. We show here that the metabolic enzyme alkylglyceronephosphate synthase (AGPS), a critical step in the synthesis of ether lipids, is up-regulated across multiple types of aggressive human cancer cells and primary tumors. We demonstrate that ablation of AGPS in cancer cells results in reduced cell survival, cancer aggressiveness, and tumor growth through altering the balance of ether lipid, fatty acid, eicosanoid, and fatty acid-derived glycerophospholipid metabolism, resulting in an overall reduction in the levels of several oncogenic signaling lipids. Taken together, our results reveal that AGPS, in addition to maintaining ether lipids, also controls cellular utilization of fatty acids, favoring the generation of signaling lipids necessary for promoting the aggressive features of cancer.

SUBMITTER: Benjamin DI 

PROVIDER: S-EPMC3773741 | biostudies-literature | 2013 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity.

Benjamin Daniel I DI   Cozzo Alyssa A   Ji Xiaodan X   Roberts Lindsay S LS   Louie Sharon M SM   Mulvihill Melinda M MM   Luo Kunxin K   Nomura Daniel K DK  

Proceedings of the National Academy of Sciences of the United States of America 20130826 37


Aberrant lipid metabolism is an established hallmark of cancer cells. In particular, ether lipid levels have been shown to be elevated in tumors, but their specific function in cancer remains elusive. We show here that the metabolic enzyme alkylglyceronephosphate synthase (AGPS), a critical step in the synthesis of ether lipids, is up-regulated across multiple types of aggressive human cancer cells and primary tumors. We demonstrate that ablation of AGPS in cancer cells results in reduced cell s  ...[more]

Similar Datasets

| S-EPMC4703096 | biostudies-literature
| S-EPMC6158338 | biostudies-literature
2019-07-19 | GSE115143 | GEO
2014-12-19 | E-GEOD-64326 | biostudies-arrayexpress
2014-12-19 | GSE64326 | GEO
| S-EPMC4761264 | biostudies-literature
| S-EPMC4501903 | biostudies-literature
2021-09-10 | PXD024116 | Pride
| S-EPMC3279356 | biostudies-literature
| S-EPMC4244643 | biostudies-literature