Unknown

Dataset Information

0

Plasticity of renal erythropoietin-producing cells governs fibrosis.


ABSTRACT: CKD progresses with fibrosis and erythropoietin (Epo)-dependent anemia, leading to increased cardiovascular complications, but the mechanisms linking Epo-dependent anemia and fibrosis remain unclear. Here, we show that the cellular phenotype of renal Epo-producing cells (REPs) alternates between a physiologic Epo-producing state and a pathologic fibrogenic state in response to microenvironmental signals. In a novel mouse model, unilateral ureteral obstruction-induced inflammatory milieu activated NF?B and Smad signaling pathways in REPs, rapidly repressed the Epo-producing potential of REPs, and led to myofibroblast transformation of these cells. Moreover, we developed a unique Cre-based cell-fate tracing method that marked current and/or previous Epo-producing cells and revealed that the majority of myofibroblasts are derived from REPs. Genetic induction of NF?B activity selectively in REPs resulted in myofibroblastic transformation, indicating that NF?B signaling elicits a phenotypic switch. Reversing the unilateral ureteral obstruction-induced inflammatory microenvironment restored the Epo-producing potential and the physiologic phenotype of REPs. This phenotypic reversion was accelerated by anti-inflammatory therapy. These findings demonstrate that REPs possess cellular plasticity, and suggest that the phenotypic transition of REPs to myofibroblasts, modulated by inflammatory molecules, underlies the connection between anemia and renal fibrosis in CKD.

SUBMITTER: Souma T 

PROVIDER: S-EPMC3785278 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Plasticity of renal erythropoietin-producing cells governs fibrosis.

Souma Tomokazu T   Yamazaki Shun S   Moriguchi Takashi T   Suzuki Norio N   Hirano Ikuo I   Pan Xiaoqing X   Minegishi Naoko N   Abe Michiaki M   Kiyomoto Hideyasu H   Ito Sadayoshi S   Yamamoto Masayuki M  

Journal of the American Society of Nephrology : JASN 20130705 10


CKD progresses with fibrosis and erythropoietin (Epo)-dependent anemia, leading to increased cardiovascular complications, but the mechanisms linking Epo-dependent anemia and fibrosis remain unclear. Here, we show that the cellular phenotype of renal Epo-producing cells (REPs) alternates between a physiologic Epo-producing state and a pathologic fibrogenic state in response to microenvironmental signals. In a novel mouse model, unilateral ureteral obstruction-induced inflammatory milieu activate  ...[more]

Similar Datasets

| S-EPMC9303970 | biostudies-literature
| S-EPMC3191152 | biostudies-literature
| S-EPMC7046585 | biostudies-literature
| S-EPMC6677766 | biostudies-literature
| S-EPMC5112528 | biostudies-literature
| S-EPMC7063184 | biostudies-literature
| S-EPMC8561873 | biostudies-literature
| S-EPMC7887226 | biostudies-literature
2023-03-13 | GSE193321 | GEO
| S-EPMC9286872 | biostudies-literature