Ontology highlight
ABSTRACT: Objective
To construct a model for depression in Parkinson disease (PD) and to study the relative contribution of PD-specific and nonspecific risk factors to this model.Methods
Structural equation modeling of direct and indirect associations of risk factors with the latent depression outcome using a cross-sectional dataset of 342 patients with PD.Results
A model with acceptable fit was generated that explained 41% of the variance in depression. In the final model, 3 PD-specific variables (increased disease duration, more severe motor symptoms, the use of levodopa) and 6 nonspecific variables (female sex, history of anxiety and/or depression, family history of depression, worse functioning on activities of daily living, and worse cognitive status) were maintained and significantly associated with depression. Nonspecific risk factors had a 3-times-higher influence in the model than PD-specific risk factors.Conclusion
In this cross-sectional study, we showed that nonspecific factors may be more prominent markers of depression than PD-specific factors. Accordingly, research on depression in PD should focus not only on factors associated with or specific for PD, but should also examine a wider scope of factors including general risk factors for depression, not specific for PD.
SUBMITTER: Leentjens AF
PROVIDER: S-EPMC3795592 | biostudies-literature | 2013 Sep
REPOSITORIES: biostudies-literature
Leentjens Albert F G AF Moonen Anja J H AJ Dujardin Kathy K Marsh Laura L Martinez-Martin Pablo P Richard Irene H IH Starkstein Sergio E SE Köhler Sebastian S
Neurology 20130814 12
<h4>Objective</h4>To construct a model for depression in Parkinson disease (PD) and to study the relative contribution of PD-specific and nonspecific risk factors to this model.<h4>Methods</h4>Structural equation modeling of direct and indirect associations of risk factors with the latent depression outcome using a cross-sectional dataset of 342 patients with PD.<h4>Results</h4>A model with acceptable fit was generated that explained 41% of the variance in depression. In the final model, 3 PD-sp ...[more]