Unknown

Dataset Information

0

Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut.


ABSTRACT: Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 ?g per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 ?g/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as ?g/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate.

SUBMITTER: Stoner KA 

PROVIDER: S-EPMC3797043 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut.

Stoner Kimberly A KA   Eitzer Brian D BD  

PloS one 20131015 10


Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric anal  ...[more]

Similar Datasets

2020-08-04 | GSE143210 | GEO
| S-EPMC4999132 | biostudies-literature
| S-EPMC4111844 | biostudies-other
| S-EPMC1847501 | biostudies-literature
| S-EPMC3558502 | biostudies-literature
| S-EPMC8158351 | biostudies-literature
| S-EPMC6972851 | biostudies-literature
2012-05-23 | GSE25455 | GEO
| S-EPMC3464271 | biostudies-literature
| S-EPMC4770327 | biostudies-literature